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Dexter Kozen



Preface

Dexter Kozen is a personal force in computer science. Even those who have
met him only once come away with an almost physical sense of his intellectual
horsepower, his boundless energy, and his intellectual depth. The contributors
to this volume bear witness to his influence, and their eagerness to join us in
this enterprise confirmed our expectations that we would attract a diverse and
enthusiastic group of authors, revealing the vast range of Dexter’s interests and
contributions. One of the two editors has known Dexter longer than the other
one has known her parents. Both of them will add their laudatios in this Preface.
First we introduce the wide spectrum of contributions in this volume that reflect
the breadth of Dexter’s work and influence.

Dexter has been a leader in the development of Kleene Algebras (KAs), and
the article by Andreka, Mikulas, and Nemeti presents a new result on axioma-
tizing Residuated Kleene Algebras. The paper by Kupke and Rutten looks at a
coalgebraic approach to automatic sequences. Dexter was inspired by the work of
Rutten and his coauthors to examine a coalgebraic approach to KAs with tests
(KATs). His interest in coalgebraic methods attracted the article by Bonchi,
Bonsangue, Rutten, and Silva on Brzozowski’s minimization algorithm for finite
automata. This looks like another algorithm that is ripe for formalization and
perhaps for extraction from a formal proof as was done for the minimization al-
gorithm in the classic 1969 textbook of Hopcroft and Ullman, Formal Languages
and Their Relation to Automata using the Nuprl prover. Dexter’s results on
congruence closure have been used in the Nuprl system for years, invoked thou-
sands of times a week at Cornell alone. The article by Kreitz discusses other
ways in which Nuprl has been a formal partner in Dexter’s work, a kind of self
application of Kozen to Kozen. Indeed, we thought of writing an article on the
formal results in the Nuprl digital library that are related to Dexter’s work, but
then we saw that these connections would be manifest in this collection. The
article by Jeannin on capsules is another example where the elegance of ideas
that Dexter develops with his students influence implementation work at Cornell
and elsewhere.

The article by Panangaden, Knight, and Mardare on completeness of epis-
temic logic represents another topic on which Dexter has done influential work,
namely, the completeness of various programming logics. In the same topic, the
paper by Moss, Wennstrom, and Whitney presents a complete logical system for
the equality of recursive terms for sets. This theme is closely related to the theme
of finding decision procedures for logics as presented in the article by Rehof and
Urzyczyn. This article uses results on alternation, a topic of Dexter’s research
for which he won the Outstanding Innovation Award from IBM in 1980. Another
work related to alternation is the paper by Michalewski and Niwinski. Still re-
lated to logic, the volume includes two papers on game semantics. The paper
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by Winskel presents a bicategorical formulation of games representing concur-
rent programs and processes. Parikh, Tasdemir, and Witzel discuss choice and
uncertainty in games.

Donald discusses in detail the impact that one of the first papers of Dexter,
“On the Power of the Compass,” co-authored with Manuel Blum, has had in
robotics and nanoscience. This work fits in another field where Dexter has made
pioneering contributions, namely, in the area of (algebraic) algorithms and com-
plexity. In the same topic fit the paper by Palsberg, who presents a tutorial
proof that overloading is NP-complete, the paper by Carmosino, Immerman,
and Jordan, on descriptive complexity, presenting a tool for performing research
and learning about finite model theory, and also the papers by Chen and Sharp.
Chen’s paper discusses the complexity of the quantified constraint satisfaction
problem on finite structures and Sharp discusses the complexity of distance col-
oring in graphs.

It is gratifying to see papers from three of Dexter’s graduated PhD students,
Hubie Chen, Neal Glew, and Alexa Sharp. We discussed above the papers by
Chen and Sharp. Glew’s paper, on subtyping and equirecursive types, is a prime
example of another area in which Dexter has worked, namely, programming
languages and program analysis.

The volume also includes articles not directly related to Dexter’s research but
which add to the feeling of diversity that has always characterized his science.
Salomaa, who investigated in the past one of Dexter’s favorite research topics
(completeness of KAs), presents a paper where he studies reaction systems useful
to model biochemical reactions. Gorecki and Tiuryn, the latter co-author, with
Dexter and David Harel, of a book on dynamic logic, present a quite elaborate
paper on phylogenetics.

The second part of this volume includes laudatios from several collaborators,
students and friends, including the members of his current band. The two editors
add their laudatios below.

The first editor has known Dexter since 1976 when Juris Hartmanis brought
Dexter to his office and said something like, “Here is a very clever chap, one
of my PhD students, that you should know since he is also interested in the
kind of thing you do.” I think Juris might have added “strange as that kind
of thing is.” It didn’t take me long to see this truth, and my students and I
were implementing his very clever congruence closure algorithm in our PLCV
Programming Logic system by 1978. We have kept that algorithm as a part of
our interactive provers ever since, modifying it to handle types as our systems
evolved. Over the years my students and I have been influenced by countless
ideas and insights from Dexter. More broadly, the students at Cornell universally
admire Dexter for his exceptionally precise and clear lectures. Their style can
be seen in the four textbooks Dexter has written: The Design and Analysis
of Algorithms, Automata and Computability, Dynamic Logic (with Harel and
Tiuryn), and Theory of Computation – all but one published by Springer. I
have taught from his unpublished lecture notes as well, and that is a remarkable
experience. Everything is perfectly explained. It is no wonder that he is regarded
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by so many Cornell students as the best teacher that ever taught them. All of
Dexter’s colleagues have benefited from his extraordinary teaching ability and
from his books and polished lecture notes. Those of us who have played ultimate
frisbee, hockey, and tennis with Dexter know that he is also a remarkable athlete
who can then step from the hockey rink to the stage and wow an audience with
his musical talents. Dexter is one of a kind.

The second editor met Dexter in Amsterdam when she was a first-year inse-
cure PhD student. Talking to Dexter for the first time was a revealing moment,
and after just a few minutes into the conversation she realized how much more
than only a brilliant researcher Dexter was. His ability to explain a solution to
a problem is astonishing and reading his papers was a great learning tool along
the years. The months she spent in Ithaca after her PhD were great in many
ways, and she is grateful to Dexter and Fran for having made all the efforts
to make her, and later Jan Rutten and Marcello Bonsangue, welcome in the
Finger Lakes’ region. From the many valuable lessons she learned from Dexter,
she chooses one to share with the readers: a beautiful result deserves a beautiful
proof. Dexter puts an amazing energy into everything he does and she is proud
to know him and to have been given the opportunity to work with him. She
wishes him all the best for the many years to come!

We are grateful to everyone who has participated in putting together this
volume and the symposium in honor of Dexter. We thank all the authors for
writing wonderful papers that will certainly delight Dexter and also for help-
ing us with the reviewing process. Several people at Cornell, including Michelle
Eighmey, Jim Entwood, Tammy Gardner, Joe Halpern and Juris Hartmanis, de-
serve a special mention for all their efforts in the organization of the symposium.
We also thank everyone at Springer, most notably Alfred Hofmann and Anna
Kramer, who embraced this project with enthusiasm and helped us in composing
the book.

We use the title of one of the laudatios in this volume, by David Harel, to
conclude this preface. It has been our greatest pleasure to organize this volume
as a tribute to Dexter Kozen – A Winning Combination of Brilliance, Depth,
and Elegance.

April 2012 Robert L. Constable
Alexandra Silva
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Residuated Kleene Algebras�

Hajnal Andréka1, Szabolcs Mikulás2, and István Németi1
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Abstract. We show that there is no finitely axiomatizable class of alge-
bras that would serve as an analogue to Kozen’s class of Kleene algebras
if we include the residuals of composition in the similarity type of relation
algebras.

1 Introduction

One of the standard interpretations of Kleene algebras is by families of binary
relations: relational Kleene algebras, RKA. It is well known that the equational
theory of RKA is not finitely axiomatizable; see [14] or [4, Theorem 9] in English.
But Kozen [9] proved that there are intuitive quasi-equations (i.e., equational
implications) valid in RKA which together with finitely many equations do ax-
iomatize the equational theory of RKA. The so obtained quasi-variety is Kozen’s
class of Kleene algebras, KA. Thus there is a finitely axiomatized quasi-variety
KA ⊇ RKA generating the same variety as RKA, i.e., using the terminology of
Definition 2.3,

KA provides a strong, finite quasi-axiomatization of RKA.

Pratt [13] observed that including the residuals of composition into the similarity
type of Kleene algebras has the advantage that the resulting class is a finitely
axiomatizable variety; with the use of the residuals the quasi-equations in the
axiomatization of KA can be expressed as equations. Following Pratt we will
call the class of Kleene algebras equipped with the residuals of composition
action algebras, AA, and we will call the subclass of action algebras that can
be interpreted over families of binary relations relational action algebras, RAA.
Thus, RAA consists of members of RKA equipped with the residuals.

In this paper we prove that the price of including the residuals into the sim-
ilarity type, and so turning KA into a variety AA, is not only that the equa-
tional theory of RAA is not finitely axiomatizable, but there is no strong, finite

� Research supported by the Hungarian National Foundation for Scientific Research
grant No. T81188.

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 H. Andréka, S. Mikulás, and I. Németi

quasi-axiomatization for RAA; see Theorem 3.2. Thus, the “trick” in defining KA
cannot be done again for RAA.

Kozen [10] expands the similarity type of action algebras by meet. The re-
sulting class, action lattices, AL, is again a finitely axiomatizable variety. We
define the class of relational action lattices, RAL, as that subclass of AL whose
elements can be represented on binary relations. The equational theory of RAL
turns out to be nonfinitely axiomatizable; see [7]. Here we give an alternative,
simpler proof of this fact, and show that strong, finite quasi-axiomatization is
impossible in this case, too; see Theorem 4.1.

The rest of the paper is organized as follows. In the next section we give precise
definitions of the classes of algebras to be investigated and a formal definition
of finite quasi-axiomatizability. Then we turn our attention to action algebras in
Section 3. In Section 4 we look at action lattices. We conclude with some open
problems.

2 Basics

Given a similarity type Λ, we denote the class of relational Λ-algebras by R(Λ):
the class of those Λ-algebras that are isomorphic to algebras of binary rela-
tions where the elements of Λ are interpreted as “natural” operations on binary
relations. Using the terminology of the relation algebra literature, we will some-
times refer to elements of R(Λ) as representable algebras. Below we give precise
definitions of R(Λ) for particular choices of Λ.

Definition 2.1 (Relational Kleene algebras). The class of relational Kleene
algebras is

RKA = R(+, ;, ∗, 0, 1′) ,

i.e., the class of subalgebras of algebras of the form (℘(W ),+, ;, ∗, 0, 1′) where W
is an equivalence relation, + is set union, ; is relation composition

x ; y = {(u, v) ∈ W : (u,w) ∈ x and (w, v) ∈ y for some w} ,
∗ is reflexive–transitive closure, 0 is the emptyset, and 1′ is the identity relation
restricted to W

1′ = {(u, v) ∈W : u = v} .

We recall the interpretation of the residuals \ and / of composition in relation
algebras:

x \ y = {(u, v) ∈ W : ∀w((w, u) ∈ x implies (w, v) ∈ y)}
x / y = {(u, v) ∈ W : ∀w((v, w) ∈ y implies (u,w) ∈ x)} .

Next we define expansions of relational Kleene algebras with residuals and meet;
see [13,10,8] for similar expansions.



Residuated Kleene Algebras 3

Definition 2.2 (Relational Residuated Kleene Algebras). The class of
relational action algebras is defined as

RAA = R(+, ;, ∗, /, \, 0, 1′)

while the class of relational action lattices is defined as

RAL = R(·,+, ;, ∗, /, \, 0, 1′)

where · is interpreted as intersection.

We note that we would get an equivalent definition if we require that W is a
Cartesian square U ×U in the above definitions. We chose W be an equivalence
relation, since we will sometimes include the top element 1 into Λ, and requiring
that 1 is interpreted as a Cartesian square would result in classes that are not
closed under products. Other additional operations we will consider in this paper
are complement − and converse �. See [5,6] for Kleene algebras expanded with
converse.

It may be useful to introduce some terminology to describe when the equa-
tional theory of a class of algebras has a finite quasi-equational axiomatization.

Definition 2.3. Given a class K of algebras, we say that (the equational theory
of) K is finitely quasi-axiomatized if there is a quasi-variety Q such that

– Q and K generate the same variety, i.e., their equational theories coincide:
Eq(Q) = Eq(K),

– Q is finitely axiomatizable.

If, in addition,

– K ⊆ Q, i.e., the axioms of Q are valid in K,

then we say that the finite quasi-axiomatization is strong.

3 Action Algebras

In this section we show that relational action algebras do not have a strong,
finite quasi-axiomatization; see Theorem 3.2.

It is well known that the classes RAA and RAL are not axiomatizable by
first-order logic formulas, because the presence of reflexive–transitive closure in
their signatures causes them to be not closed under ultraproducts. The following
theorem cited from [2, Theorem 5.1] implies that even their quasi-equational
theories are not finitely axiomatizable.

Theorem 3.1. Let {+, ;} ⊆ Λ ⊆ {+, ;, ∗, /, \,�, 0, 1′, 1}. Neither R(Λ) nor the
quasi-equational theory of R(Λ) is finitely axiomatizable.
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Now, the equational theory of R(+, ;) is different, it is finitely axiomatizable (by
equations), and moreover the equational theories of R(Λ) where the residuals
and transitive closure are not included in Λ tend to be finitely axiomatizable.
For a complete description of the cases see [2]. Our next theorem shows that this
situation changes radically if we include the residuals into the similarity types.

Theorem 3.2. Let {+, ;, /, \} ⊆ Λ ⊆ {+, ;, ∗, /, \,�, 0, 1′, 1}. The equational
theory of R(Λ) is not finitely axiomatizable.

Moreover, there is no strong, finite quasi-axiomatization of R(Λ). In fact, there
is no first-order logic formula valid in R(+, ;, ∗, /, \,�, 0, 1′, 1) which implies all
the equations valid in R(+, ;, /, \).
Proof. We recall, for every natural number n, the algebra

An = (An,+, ;,
∗, /, \,�, 0, 1′, 1)

from [2, Theorem 5.1].
We define

Gn = {a, a′1, a′′1 , . . . , a′n, a′′n, b, b′1, b′′1 , . . . , b′n, b′′n, o, 1′, 0} .
Let (An,+) be the free upper semilattice generated freely by Gn under the
defining relations:

{a ≤ a′i + a′′i , b ≤ b′i + b′′i , 0 + x = x : 1 ≤ i ≤ n, x ∈ Gn} .
Let S denote the following set of two-element subsets of An:

S =
{{a, b′1}

} ∪ {{a′i, b′′i } : 1 ≤ i ≤ n} ∪ {{a′′i , b′i+1} : 1 ≤ i < n
} ∪ {{a′′n, b}

}
.

Next we define the rest of the operations on An as follows:

0 = ∅ 1 =
∑

Gn x� = x

0 ; x = 0 = x ; 0 1′ ; x = x = x ; 1′

if x, y /∈ {0, 1′}, then x ; y =

{
o if {x, y} ∈ S
1 otherwise.

Kleene star ∗ is defined as follows. We have 0 ; 0 = 0, 1′ ; 1′ = 1′ and x ; x = 1
for every x ∈ An � {0, 1′}. Hence we define, in An, 0∗ = 1′, 1′∗ = 1′ and x∗ = 1
for every x ∈ An � {0, 1′}.

We define the residual \ in the algebras An so that x\ y is the largest element
z such that x ;z ≤ y. Then the algebras An are in fact closed under the operation
\ (since they are finite). Indeed, the extension of x \ y is determined by

z ≤ x \ y iff x ; z ≤ y .
Note that this defines / as well, since / and \ coincide in symmetric algebras
(where x ; y = y ; x is valid).
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It is shown in [2] that

1. the {+, ;}-reduct of An is not representable,
2. any nontrivial ultraproduct over ω, A, of the An’s is representable.

Item 1 above was shown by constructing a quasi-equation qn for every n as

n∧

i=1

(x ≤ x′i + x′′i ∧ y ≤ y′i + y′′i )→

x ; y ≤ x ; y′1 +
n−1∑

i=1

(x′i ; y′′i + x′′i ; y′i+1) + x′n ; y′′n + x′′n ; y .

By an induction on n one can show that qn is valid in representable algebras.
On the other hand, the evaluation ε given by

ε(x) = a ε(x′i) = a′i ε(x′′i ) = a′′i ε(y) = b ε(y′i) = b′i ε(y′′i ) = b′′i

falsifies qn in An (since a;b = 1 and each term on the right of ≤ in the consequent
evaluates to o).

Here we modify qn to equation en with the same properties, but we have to
pay the price of including the residuals into the language. Then it follows that
the {+, ;, /, \}-reduct of An is not in the variety generated by the representable
algebras.

Below we will use the following abbreviations xi := x′i + x′′i and yi := y′i + y′′i
for 1 ≤ i ≤ n. We define, inductively,

κ1 = x \ x1 κi+1 = (x ; κ1 ; . . . ; κi) \ xi+1

and

λ1 = yn / y λi+1 = yn−i+1 / (λi ; . . . ; λ1 ; y) .

Let τn be the term

x ; κ1 ; . . . ; κn ; λn ; . . . ; λ1 ; y .

We define σn as

x ; κ1 ; . . . ; κn ; y′1 + x′1 ; κ2 ; . . . ; κn ; y′′1 + x′′1 ; κ2 ; . . . ; κn ; λn ; y′2 + . . .+

x′′n−1 ; κn ; λn ; . . . ; λ2 ; y′n + x′n ; λn ; . . . ; λ2 ; y′′n + x′′n ; λn ; . . . ; λ1 ; y .

Finally, en is defined as τn ≤ σn.
It is not difficult to show that en is valid in representable algebras. As an

example we show the case n = 2. See Figure 1.
Equation e2 has the form τ2 ≤ σ2 where

τ2 = x ; x \ x1 ; (x ; x \ x1) \ x2 ; y1 / (y2 / y ; y) ; y2 / y ; y
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Fig. 1. Validity of e2

and

σ2 = x ; x \ x1 ; (x ; x \ x1) \ x2 ; y′1+

x′1 ; (x ; x \ x1) \ x2 ; y′′1+

x′′1 ; (x ; x \ x1) \ x2 ; y1 / (y2 / y ; y) ; y′2+

x′2 ; y1 / (y2 / y ; y) ; y′′2+

x′′2 ; y1 / (y2 / y ; y) ; y2 / y ; y .

Let A be a representable algebra and assume that (u, v) ∈ τ2 in A under some
valuation (for the sake of simplicity we denote the value of a term as the term
itself). Then there are w1, w2, . . . , w5 such that (u,w1) ∈ x, (w1, w2) ∈ x \ x1,
(w2, w3) ∈ (x ; x \ x1) \ x2, (w3, w4) ∈ y1 / (y2 / y ; y), (w4, w5) ∈ y2 / y and
(w5, v) ∈ y. By the definition of composition we get that (u,w2) ∈ x ; x \ x1
and (w4, v) ∈ y2 / y ; y. Then by the definition of the residuals we have that
(u,w2) ∈ x1 = x′1 + x′′1 , (u,w3) ∈ x2 = x′2 + x′′2 , (w4, v) ∈ y2 = y′2 + y′′2 and
(w3, v) ∈ y1 = y′1 + y′′1 .

For a contradiction assume that (u, v) /∈ σ2. Then (w3, v) /∈ y′1, otherwise we
would have (u, v) ∈ x;x\x1 ;(x;x\x1)\x2 ;y′1. Hence (w3, v) ∈ y′′1 . Then (u,w2) /∈
x′1, otherwise we get (u, v) ∈ x′1 ; (x ; x \ x1) \ x2 ; y′′1 . Hence (u,w2) ∈ x′′1 . Then
(w4, v) /∈ y′2, otherwise we get (u, v) ∈ x′′1 ; (x ;x\x1)\x2 ;y1/(y2/y ;y) ;y′2. Hence
(w4, v) ∈ y′′2 . Then (u,w3) /∈ x′2, otherwise we get (u, v) ∈ x′2 ; y1 / (y2 / y ; y) ; y′′2 .
But then (u,w3) ∈ x′′2 , whence (u, v) ∈ x′′2 ; y1 / (y2 / y ; y) ; y2 / y ; y. That is,
(u, v) ∈ σ2 contrary to the assumption.

On the other hand, the evaluation ε given by

ε(x) = a ε(x′i) = a′i ε(x′′i ) = a′′i ε(y) = b ε(y′i) = b′i ε(y′′i ) = b′′i
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falsifies en in An. Indeed, a \ ai and bi / b equal the identity 1′ for all 1 ≤ i ≤ n
(since a ≤ ai = a′i +a′′i and there is no nonzero element z other than the identity
such that a ; z ≤ ai). Since z = z ; 1′, we get that every term between x and y in
τn evaluates to 1′. Hence τn evaluates to a ; b = 1, By the same reasoning we get
that every element of the sum in σn evaluates to o. Thus ε(τn) = 1 �≤ o = ε(σn).

To finish the proof, let ϕ be an arbitrary first-order logic formula valid in
R(+, ;, ∗, /, \,�, 0, 1′, 1). Then ϕ is valid in A, because the latter is representable.
Since A is an ultraproduct of the An’s, there is an n such that ϕ is valid in An.
Since the equation en is not valid in An, we have that ϕ does not imply en,
though the latter is an equation valid in R(+, ;, /, \). �
As a corollary we get the following.

Theorem 3.3. The equational theory of relational action algebras is not finitely
axiomatizable over the equational theory of relational Kleene algebras, i.e., there
is no finite set of Eq(RAA) which together with Eq(RKA) would imply Eq(RAA).

Proof. Assume the contrary, i.e., that there is a finite set E which would ax-
iomatize the equational theory Eq(RAA) of RAA over the equational theory
Eq(RKA) of RKA. Since the finite set E′ of equational axioms of AA in [13]
implies Eq(RKA), then the finite set E ∪ E′ would axiomatize Eq(RAA), which
is impossible according to Theorem 3.2. �

4 Action Lattices

In this section we look at similarity types that include the meet operation as
well. Since Theorem 3.2 does not apply to signatures that include meet, we need
another construction to show nonfinite axiomatizability of the equational theory.

The following result follows from [7, Theorem 2.3 and Corollary 4.4.]. The
construction in [7] is rather involved, since we needed dense algebras (where x ≤
x;x is valid) so that they can be applied to relevance logic. A simpler construction
is available from [11] that has been used to show nonfinite axiomatizability of
the equational theories of some residuated algebras in [12]. The Kleene star
operation was not considered in [12], but it can be easily added to the signature.
Also, complementation − can be included in the signature; in the representable
algebras − is interpreted as complementation with respect to the largest element
of the algebra.

Theorem 4.1. Let {·,+, ;, \} ⊆ Λ ⊆ {·,+,−, ;, ∗, /, \,�, 0, 1′, 1}. The equational
theory of R(Λ) is not finitely axiomatizable.

Moreover, there is no strong, finite quasi-axiomatization of R(Λ). In fact, there
is no first-order logic formula valid in R(·,+,−, ;, ∗, /, \,�, 0, 1′, 1) which implies
all the equations valid in R(·,+, ;, \).
Proof. We recall the main features of the algebras An = (An,−, ·,+, ;,�, 0, 1′, 1)
of [11]. An has the following atoms (minimal, nonzero elements): identity 1′, qi
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for 1 ≤ i ≤ m, and pj for 1 ≤ j ≤ n with m = 3 ·n!. Every atom is self converse:
x� = x. Composition is defined so that

qi+1 ≤ p1 ; qi for every 1 ≤ i < m (1)

0 = qr · qs ; qt for every 1 ≤ r, s, t ≤ m (2)

0 = pl · pl ; pl for every 1 ≤ l ≤ n. (3)

The elements of An are the subsets of the atoms, and +, ·,− are defined as the
corresponding set theoretic operations. Composition ; and converse � distribute
over +. We define x \ y := −(x� ;−y) and x/ y := −(x ; y�). It follows that (the
{·,+, ;}-reduct of) An is not representable (since that would imply the existence
of a colouring of the edges of a total graph of m vertices with n colours without
monochromatic triangles; an impossible task). See Figure 2, where every dotted
arrow should have a color pi for some 1 ≤ i ≤ n, and [1,12] for further details.
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Fig. 2. The reason for non-representability

Furthermore, for every nonidentity atom x, we have that x3 := x ;x ;x = 1 in
An. Thus we can define Kleene star in An as

x∗ =

{
1′ x ∈ {0, 1′}
1 otherwise.
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It is shown in [11] that any nonprincipal ultraproduct A of the An’s is repre-
sentable. By the above definition of Kleene star in An, it follows that we can
define ∗ in the same way in A and that the representation respects ∗ as well.

It is shown in [12] that there are equations en in the language {·,+, ;, \} such
that they witness the nonrepresentability of An:

– en fails in the {·,+, ;, \}-reduct of An,
– en is valid in representable algebras.

We give some intuition on the construction of en. To begin with, it is not difficult
to define a quasi-equation e′n expressing that, given the definition of composition
in (1) and that the composition pi1 of i many p1 is below

∑
j pj +

∑
k qk, either

(3) (there are no monochromatic p-triangles) or (2) (there are no q-triangles) is
violated, or some of the q-atoms coincide. For instance, we can define e′n as

∧

i

yi+1 ≤ x1 ; yi ∧
∧

i

xi1 ≤
∑

l

xl +
∑

j

yj →

ym ≤
∑

i,j,l

xi1 ; (xl · xl ; xl) ; yj +
∑

i,j,k

xi1 ; (ym−i+1 · yj ; yk) +
∑

i,j�=k

xi1 ; (yj · yk)

where i, j, k range between 1 and m and l ranges between 1 and n. By the
definition of composition, e′n fails in An (the antecedent is true, but every element
of the sums in the consequent evaluates to 0 when we evaluate xl to pl and yi
to qi). On the other hand, in representable algebras, assuming the antecedent,
every ym-edge in the representation has a decomposition indicated by one of
the elements in the sums (otherwise the representation would yield a graph
colouring without monochromatic triangles). Finally, using the expressive power
of the residuals, e′n can be equivalently reformulated as an equation en — for
the technical details we refer the interested reader to [12].

Hence there are algebras, the Λ-reducts of An, which are not in the variety
generated by R(Λ) but their nonprincipal ultraproducts are in this variety. From
here on the proof ends as in that of Theorem 3.2. �
Similarly to action algebras we get the following corollary.

Corollary 4.2. The equational theory of relational action lattices is not finitely
axiomatizable over the equational theory of relational Kleene algebras, i.e., there
is no finite set of Eq(RAL) which together with Eq(RKA) would imply Eq(RAL).

5 Conclusion and Open Problems

We mentioned in the introduction that KA provides a strong, finite quasi-axioma-
tization of RKA. That is, the equational theory of RKA follows from a finite
conjunction ϕ of quasi-equations valid in RKA; see Kozen [9] for this fact and
[6] for references to related results. We proved that the analogous result does
not hold for representable residuated algebras, even if we allow ϕ to be any first-
order logic formula valid in representable algebras. Our first question is whether
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we can relax the requirement that ϕ be valid in representable algebras; and if
we relax this condition whether we can choose ϕ to be a conjunction of quasi-
equations. This would mean to find a finitely axiomatized quasi-variety Q which
generates the same variety as the representable algebras (but we do not require
RAA ⊆ Q or RAL ⊆ Q). For motivation we mention that such a quasi-variety
would provide us with a finite quasi-equational axiomatization from which we
could derive precisely those equations which are valid in representable algebras.
Thus, in this respect, validity of the axioms that are not equations is not crucial.

Problem 5.1. Do RAA and RAL have finite quasi-axiomatizations? That is, are
there finitely axiomatized quasi-varieties Q1 and Q2 such that they generate the
same varieties as generated by RAA and RAL, respectively?

By Kozen’s result in [9] and our Theorem 3.1 we get, with an argument analo-
gous to the proof of Theorem 3.3, that the quasi-equational theory of RKA is not
finitely axiomatizable over the equational theory of RKA. In view of our Theo-
rem 3.2, the same argument does not work for RAA, i.e., it is possible perhaps
that the quasi-equational theory of RAA is finitely axiomatizable over the equa-
tional theory of RAA. We can hope even for the two theories to coincide in this
case, because of the following. As Pratt’s work shows, the presence of the resid-
uals of composition allows us to express certain quasi-equations as equations.
We are not aware of any general result that would characterize precisely when
this can be done. Perhaps this can be done for sufficiently many quasi-equations.
Hence we formulate the following question.

Problem 5.2. Do the quasi-variety and the variety generated by RAA (and by
RAL) coincide?

Finally, we mention the same finite axiomatizability problem we addressed in
this paper in the context of language algebras. It is well known that the equa-
tional theories of relational and language Kleene algebras coincide. However,
their quasi-equational theories already differ, there are fewer language Kleene
algebras than relational ones. Also the equational theories differ if we include
meet into the similarity type; see [3] on the connections between the relational
and the language models of Kleene algebras/lattices.

Problem 5.3. Are the equational theories of action algebras and action lattices
interpreted over languages finitely axiomatizable? If the answer is negative, do
they have (strong) finite quasi-axiomatizations?

In connection with this problem we mention that the algebras we used to prove
nonfinite axiomatizability in the relational case are of limited use, since their
ultraproduct is not representable as a language algebra. The reason is that it
contains elements x that are disjoint from the identity 1′, yet x ; x ≥ 1′. This
cannot happen in a language algebra, since 1′ is represented as the singleton
language containing only the empty word.



Residuated Kleene Algebras 11

Added in proof: During proof-reading this paper we came across the article
Buszkowski, W.: On the complexity of the equational theory of relational action
algebras. In Schmidt, R.A. (ed.) Relations and Kleene Algebra in Computer
Science. LNCS vol. 4136, pp. 106–119. Springer (2006), proving that the com-
plexity of the equational theory of relational residuated Keene algebras is so
high (Π0

1 -hard) that it is impossible to give a recursive axiomatization. This
gives negative answers to the problems in Section 5 when the Kleene star ∗ is
included in the similarity type. In the light of Buszkowski’s paper, our theorems
say that ∗ is not solely responsible for the nonfinite quasi-axiomatizability: al-
ready the ∗-free equations are so complicated that not even the strong ∗ can help
finitely axiomatize them.

References
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Abstract. We give a new presentation of Brzozowski’s algorithm to
minimize finite automata, using elementary facts from universal algebra
and coalgebra, and building on earlier work by Arbib and Manes on the
duality between reachability and observability. This leads to a simple
proof of its correctness and opens the door to further generalizations.

This paper is dedicated to Dexter Kozen on the occasion of his 60th birthday.
Dexter always seeks simplicity and crystal-clear proofs in his research: “a beau-
tiful result deserves a beautiful proof” could be the motto of his work. This paper
is a tribute to that�.

1 Introduction

Brzozowski’s algorithm [6] is a somewhat unusual recipe for minimizing finite
state automata: starting with a (possibly non-deterministic) automaton, one re-
verses its transitions, makes it deterministic, takes the part that is reachable, and
then repeats all of this once more. The result will be a deterministic automaton
that is the minimization of the original one.

Though an elementary description and correctness proof of the algorithm is
not very difficult (see for instance [13, Cor. 3.14]), the algorithm comes to most
as a bit of a surprise. Here we try to add to its understanding by presenting a
proof that is based on a result by Arbib and Manes [2,3] on the duality between
reachability and observability (the latter is another word for minimality).

We will first present a reformulation of Arbib and Manes’ duality result in terms
of a bit of elementary algebra and coalgebra. These are the natural mathemati-
cal settings for the modelling of reachability and observability, respectively. Ul-
timately, their duality is due to the fact that the transitions of an automaton X
(with input alphabet A) can be modelled both algebraically, as a function of type
X × A → X and coalgebraically, as a function of type X → XA. Next, we will
derive (the correctness of) Brzozowski’s algorithm as a corollary from this duality.

� We are certain that Dexter will try to simplify our proofs and knowing him he will
not stop until he does so! We hope we have made it challenging enough!

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 12–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Our reasons for giving this new formulation of Brzozowski’s algorithm are the
following.

First, the duality between reachability and observability, on which we will base
our proof, is in itself a very beautiful result that, unfortunately, it is not very
well-known. The original proof by Arbib and Manes uses some category theory
that makes it difficult to understand to many. Although our proof of this duality
is in essence categorical as well, we have formulated it in elementary terms, using
only the notions of sets and functions. As a result, the present paper should be
understandable to anyone with a very basic understanding of automata.

Secondly, Brzozowski’s algorithm follows as an immediate corollary of this
(newly formulated) duality result. This observation gives a new way of under-
standing the algorithm and makes a formal proof of its correction very easy.

Thirdly, we expect that our proof of Brozowski’s algorithm is easy to gener-
alise. The present paper contains the straightforward generalisation of the algo-
rithm to Moore automata. We mention further applications, to weighted and to
probabilistic automata, as future work.

2 Rechability and Observability

Let 1 = {0}, 2 = {0, 1} and let A be any set. A deterministic automaton with
inputs from A is given by the following data:

1
i

���
��

��
� 2

X

f
��������

t
��

XA

(1)

That is: a set X of states; a transition function t : X → XA mapping each state
x ∈ X to a function t(x) : A→ X that sends an input symbol a ∈ A to a state
t(x)(a); an initial state i ∈ X (formally denoted by a function i : 1→ X); and a
set of final (or accepting) states given by a function f : X → 2, sending a state
to 1 if it is final and to 0 if it is not.

We introduce reachability and observability of deterministic automata by
means of the following diagram:

1

ε

��

i

���
��

��
��

��
� 2

A∗ r ������

α

��

X

f

������������

t

��

o ������ 2A
∗

β

��

ε?

��

(A∗)A
rA

����� XA

oA
����� (2A

∗
)A

(2)

in the middle of which we have our automaton X .



14 F. Bonchi et al.

On the left, we have the set A∗ of all words over A, with the empty word ε as
initial state and with transition function

α : A∗ → (A∗)A α(w)(a) = w · a

On the right, we have the set 2A
∗

of all languages over A, with transition function

β : 2A
∗ → (2A

∗
)A β(L)(a) = {w ∈ A∗ | a · w ∈ L}

and a final state function
ε? : 2A

∗ → 2

that maps a language to 1 if it contains the empty word, and to 0 if it does not.
Horizontally, we have functions r and o that we will introduce next. First we

define xw, for x ∈ X and w ∈ A∗, inductively by

xε = x xw·a = t(xw)(a)

i.e., xw is the state reached from x by inputting (all the letters of) the word w.
With this notation, we now define

r : A∗ → X r(w) = iw

and
o : X → 2A

∗
o(x)(w) = f(xw)

Thus r sends a word w to the state iw that is reached from the initial state i ∈ X
by inputting the word w. And o sends a state x to the language it accepts. That
is, switching freely between languages as maps and languages as subsets,

o(x) = {w ∈ A∗ | f(xw) = 1 } (3)

We think of o(x) as the semantics or the behavior of the state x.
The functions r and o are homomorphisms in the precise sense that they make

the triangles and squares of diagram (2) commute. In order to understand the
latter, we note that at the bottom of the diagram, we use, for f :V → W , the
notation

fA : V A →WA

to denote the function defined by fA(φ)(a) = f(φ(a)), for φ : A→ V and a ∈ A.
One can readily see that the function r is uniquely determined by the functions

i and t; similarly, the function o is uniquely determined by the functions t and
f . In categorical terms, the unique existence of r is a consequence of A∗ being
an initial algebra of the functor 1 + (A×−); similarly, the unique existence of o
rests on the fact that 2A

∗
is a final coalgebra of the functor 2× (−)A.

Having explained diagram (2), we can now give the following definition.

Definition 1 (Reachability and Observability). A deterministic automa-
ton X is reachable if r is surjective. It is observable if o is injective.
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Thus X is reachable if all states are reachable from the initial state: for every
x ∈ X there exists a word w ∈ A∗ such that iw = x. And X is observable
if different states recognize different languages or, in other words, if they have
different observable behavior. We note that an observable automaton is also
minimal: it does not contain any pair of (language) equivalent states. In what
follows, we shall therefore use the words observable and minimal as synonyms.

3 Constructing the Reverse of an Automaton

Next we show that by reversing the transitions, and by swapping the initial
and final states of a deterministic automaton, one obtains a new automaton
accepting the reversed language. By construction, this automaton will again be
deterministic. Moreover, if the original automaton is reachable, the resulting one
is minimal.

Our construction will make use the following operation:

V

f

��

2V

2(−) : �→

W 2W

2f

��

which is defined, for a set V , by 2V = {S | S ⊆ V } and, for f : V → W and
S ⊆W , by

2f : 2W → 2V 2f (S) = {v ∈ V | f(v) ∈ S}
(In categorical terms, this is the contravariant powerset functor.)

The main construction: Given the transition function t : X → XA of our deter-
ministic automaton, we apply, from left to right, the following three transforma-
tions:

X

t

��

XA

X ×A

��

X

2X×A

2X

��
(2X)A

2X

2t

��

The single, vertical line in the middle corresponds to an application of the op-
eration 2(−) introduced above. The double lines, on the left and on the right,
indicate isomorphisms that are based on the operations of currying and uncur-
rying. The end result consists of a new set of states: 2X together with a new
transition function

2t : 2X → (2X)A 2t(S)(a) = {x ∈ X | t(x)(a) ∈ S}
which maps any subset S ⊆ X , for any a ∈ A, to the set of all its a-predecessors.
Note that our construction does two things at the same time: it reverses the
transitions (as we shall see formally later) and yields again a deterministic au-
tomaton.



16 F. Bonchi et al.

Initial becomes final: Applying the operation 2(−) to the initial state (function)
of our automaton X gives

1

i

��

X

2

2X

2i

��

(where we write 2 for 21), by which we have transformed the initial state i into
a final state function 2i for the new automaton 2X . We note that according to
this new function 2i, a subset S ⊆ X is final (that is, is mapped to 1) precisely
when i ∈ S.

Reachable becomes observable: Next we apply the above construction(s) to the
entire left hand-side of diagram (2), that is, to both t and i and to α and ε, as
well as to the functions r and rA. This yields the following commuting diagram:

2

2X

2i

�������������

2t

��

2r �� 2A
∗

2α

��

2ε

��

(2X)A
2r

A

�� (2A
∗
)A

(4)

We note that for any language L ∈ 2A
∗
, we have 2ε(L) = ε?(L) and, for any

a ∈ A,

2α(L)(a) = {w ∈ A∗ | w · a ∈ L}
The latter resembles the definition of β(L)(a) but it is different in that it uses w·a
instead of a ·w. By the universal property (of finality) of the triple (2A

∗
, β, ε? ),

there exists a unique homomorphism

2

2A
∗

2ε

�������������

2α

��

rev ������ 2A
∗

β

��

ε?

��

(2A
∗
)A

revA
����� (2A

∗
)A

(5)

which sends a language L to its reverse

rev(L) = {w ∈ A∗ | wR ∈ L }

where wR is the reverse of w.
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Combining diagrams (4) and (5) yields the following commuting diagram:

2

2X

2i

		�������������������������

2t

��

2r
�� 2A

∗

2α

��

2ε

���������������
rev

�� 2A
∗

β

��

ε?

��

(2X)A
2r

A

�� (2A
∗
)A

revA
�� (2A

∗
)A

Thus we see that the composition of rev and 2r (is the unique function that)
makes the following diagram commute:

2

2X

2i

�������������

2t

��

O ������ 2A
∗

β

��

ε?

��

(2X)A
OA

����� (2A
∗
)A

O = rev ◦ 2r
(6)

One can easily show that it satisfies, for any S ⊆ X ,

O(S) = {wR ∈ A∗ | iw ∈ S} (7)

Final becomes initial: The following bijective correspondence

2

X

f

�� 1

f

��

2X

(again an instance of currying) transforms the final state function f of the origi-
nal automaton X into an initial state function of our new automaton 2X , which
we denote again by f . It will induce, by the universal property of (A∗, ε, α), a
unique homomorphism as follows:

1

ε

��

f



	
			

			
			

	

A∗ R ������

α

��

2X

2t

��

(A∗)A
RA

����� (2X)A

(8)
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Putting everything together: By now, we have obtained the following, new de-
terministic automaton:

1

ε

��

f



	
			

			
			

	 2

A∗
R

������

α

��

2X

2i

��












2t

��

O
������ 2A

∗

β

��

ε?

��

(A∗)A
RA

����� (2X)A
OA

����� (2A
∗
)A

(9)

where the above diagram is simply the combination of diagrams (8) and (6)
above.

Theorem 2. If the original automaton X is reachable, that is, if r is surjective,
then the new automaton 2X is observable, that is, O is injective. Furthermore,
the language accepted by the initial state f of the new automaton 2X is the
reverse of the language accepted by the initial state i of the new automaton 2X.

Proof. As the operation 2(−) transforms surjections into injections, reachability
of X implies observability of 2X . The second statement follows from the fact
that we have

O(f) = {w ∈ A∗ | 2i(fw) = 1 }
= {wR ∈ A∗ | iw ∈ f} [by identity (7)]

= rev({w ∈ A∗ | iw ∈ f})
= rev(o(i))

��
Example 3. We consider the following two automata. In the picture below, an
arrow points to the initial state and a double circle indicates that a state is final:

�� �������	x

b

��

a
���������	
������z

b
��

a

��
��
��
��
��
�

�������	
������y

b

��

a

��

���������������	xy

a
��

b �� ���������������	xyz

a,b

��

�������	������ !xz
b��

a
��

�� ��������yz

b

���
��

��
��

�

a

��
�������	
������x

b

����������

a






�������	y
b

��

a

��

�������	∅

a,b

��

�������	z
b

��

a

��
(10)

The automaton on the left is reachable (but not observable, since y and z ac-
cept the same language {a, b}∗a+1). Applying our construction above yields the
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automaton on the right, which is observable (all the states accept different lan-
guages) but not reachable (e.g., the state {x, y}, denoted by xy, is not reachable
from the initial state {y, z}). Furthermore, the language accepted by the state
{y, z} on the right: a{a, b}∗, is the reverse of the language accepted by the state
x on the left, which is {a, b}∗a. ��

4 Brzozowski’s Algorithm

As an immediate consequence, we obtain the following version of Brzozowski’s
algorithm.

Corollary 4. Applying the above construction to a deterministic and reachable
automaton accepting a language L yields a minimal automaton accepting rev(L).
Taking of the latter automaton the reachable part, and applying the same proce-
dure again yields a minimal automaton accepting L.

Example 3 continued: We saw that applying our construction to the first au-
tomaton of Example 3 resulted in the second automaton given there. By taking
the reachable part of the latter, we obtain the automaton depicted below on the
left (where 1 = {y, z}, 2 = {x, y, z} and 3 = ∅):

�������	
������2

a,b

��

���������	1

b
��
��

��
��

�

a

���������

�������	3

a,b

��

���������	2

b

��
a �� ���������������	1, 2

b

��

a

��
(11)

The automaton on the right is obtained by applying our construction once more.
It is the minimization of the automaton we started with. ��

5 Moore Automata

Moore automata generalise deterministic automata by allowing outputs in an
arbitrary set B, rather than just 2. Formally, a Moore automaton with inputs
in A and outputs in B consists of a set of states X , an initial state i : 1 → X ,
a transition function t : X → XA and an output function f : X → B. Moore
automata accept functions in BA

∗
(that is functions φ : A∗ → B) instead of

languages in 2A
∗
.

Here is in a nutshell how our story above can be generalised to Moore au-
tomata. We can redraw diagram (2) by simply replacing 2 with B. We then
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define reachability and observability as before. Next we adopt our procedure of
reversing transitions by using (the contra-variant functor) B(−) instead of 2(−):
for all sets V , BV = {φ : V → B} and, for all functions g : V →W , the function
Bg : BW → BV maps each φ ∈ BW to Bg(φ) = φ ◦ g. Finally, all the results
discussed above will also hold for Moore automata. The next example illustrates
the minimization of a Moore automaton.

Example 5. We consider the following Moore automaton with inputs in A =
{a, b} and output in the set of real numbers R. In the picture below, the output
value r of a state s is indicated inside the circle by s/r:

�� "#$%&'()p/ 1
3

a ��

b

���
��

��
��

��
��

�
"#$%&'()q/ 1

3

a

��

b

��

"#$%&'()s/1
a��

b

��

"#$%&'()t/ 2
3

a

�� b
��
"#$%&'()u/ 2

3

a

��

b��

(12)

The automaton accepts a function in R
A∗

mapping every word w ending with
ba to 1, every word ending with b to 2

3 and every other word to 1
3 . Clearly the

automaton is reachable from p. However it is not observable, since, for example,
the states p and q accept the the same function.

Applying our construction above yields a Moore automaton with R
S as set of

states, where S = {p, q, s, t, u} is the set of states of the original automaton. The
output value of a state φ : S → R is given by φ(p), where p is the initial state of
the original automaton. Further, the output function of the original automaton
becomes the new initial state, i.e., the function φ0 : S → R mapping p and q to
1
3 , t and u to 2

3 , and u to 1. By the above results, it follows that the automaton
is observable. It is not reachable, as it contains infinitely many states, and there
are only five states reachable from φ0, as we can see in the picture below.

�� *+,-./01φ0/
1
3

a ��

b

���
��

��
��

��
��

�
*+,-./01φ1/

1
3

b ��

a

���
��

��
��

��
��

�
"#$%&'()φ2/1

a,b

��

*+,-./01φ3/
2
3

a,b

  

*+,-./01φ4/
1
3

a,b

  

(13)

We do not spell out the full definition of the above states. As an example, the
state φ1 consists of the map assigning p, q and s to 1

3 , and t, u to 1. Note that

the function in R
A∗

accepted by the state φ0 maps each words w ∈ {a, b}∗ to the
same value where the reverse word wR is mapped by the function accepted by
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the original automaton in Figure 12. More formally, it maps words which begin
with ab to 1, words which begin with b to 2

3 , and all other words to 1
3 .

If we repeat the same construction one more time, and take the reachable
automaton from the initial state we obtain the minimal Moore automaton equiv-
alent to the one in Figure 12:

�� "#$%&'()x/ 1
3

a

��

b �� "#$%&'()y/ 2
3

b

�� a
!!
"#$%&'()z/1

b��

a

""

(14)

��

6 Discussion

We have given a new description and a new correctness proof of Brzozowski’s
algorithm [6] for the minimization of deterministic automata. Next we have
shown how to generalise the algorithm to deterministic Moore automata.

There are several other, sometimes more efficient minimization algorithms for
finite automata [8]. But even though the complexity of Brzozowski’s algorithm
is double exponential in the worst case (essentially because it applies the con-
travariant powerset construction twice), the algorithm has been shown to behave
rather well in practice, at least for non-deterministic automata [16].

Our proof of correctness of the algorithm is based on the duality between
reachability and observability, which is due to Arbib and Manes [2,3]. Our for-
mulation uses, albeit implicitly, a bit of (standard) universal algebra and coalge-
bra [12]. In particular we have given a simple proof that the resulting automaton
is minimal, where minimality means that the automaton does not contain two
different states with the same observable behaviour. Our method can be applied
also to automata with infinitely many states.

The duality between reachability and observability has been studied also in
other contexts. In [4], this duality is used to establish several analogies be-
tween concepts from observational (coalgebraic) and constructor-based (alge-
braic) specifications. In the present paper, we have highlighted how Brzozowski’s
algorithm integrates both concepts, for the specific case of deterministic and
Moore automata.

Yet another approach, but somewhat similar in spirit to ours, can be found
in [5], where a Stone-like duality between automata and their logical character-
ization is taken as a basis for Brzozowski’s algorithm. The precise connection
between that approach and the present paper, remains to be better understood.
More generally, it is a challenge to try and generalise Brzozowski’s algorithm to
various other types of coalgebras.

Crucial for our approach was the combined use of both algebra and coalgebra.
Notably, it was important to include in the definition of automaton an initial
state, which is in essence an algebraic concept. In coalgebra, one typically models
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automata without initial states. In that respect, so-called well-pointed coalge-
bras [1], which are coalgebras with a designated initial state, may have some
relevance for the further generalization of Brzozowski’s algorithm.

A somewhat different notion of nondeterministic Moore automata has recently
been introduced in [7]. It basically consists of a nondeterministic automaton
with output in a set that comes equipped with a commutative and associative
operator. Interesting for our context is their variant of Brzozowski’s algorithm for
the construction of a minimal deterministic Moore automaton that is equivalent
to a given nondeterministic one.

Brzozowski’s minimization algorithm has also been combined with Brzozowski’s
method for deriving deterministic automata from regular expressions in [17]. It
would be useful to investigate how such a combination can be generalized to, for
example, Kozen’s calculus of Kleene algebras with tests [9]. All that is required
for our approach is a deterministic Moore automaton accepting the guarded
language denoted by the reverse of the input expression.

Brzozowski’s algorithm was originally formulated for nondeterministic finite
automata [6]. Our present approach (as well as that of [5]) takes a deterministic
automaton as a starting point. Recently [15], we have presented a generalisation
of the subset construction for the determinisation of many different types of
automata. Examples include Rabin’s probabilistic automata [11] and weighted
automata [14], to which our method applies in spite of the fact that the resulting
deterministic (Moore) automaton is infinite. How to minimize nondeterministic
automata directly, without having to introduce an extra determinisation step,
is left as future work. Also we would like to combine the results of the present
paper with those of [15] to generalise Brzozowski’s algorithm to probabilistic and
weighted automata.
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Abstract. We describe our development and use of DescriptiveEnviron-
ment (DE). This is a program to aid researchers in Finite Model Theory
and students of logic to automatically generate examples, counter-
examples of conjectures, reductions between problems, and visualizations
of structures and queries.

DescriptiveEnvironment is available for free use under an ISC license
at http://www.cs.umass.edu/∼immerman/de . We encourage researchers
and students at all levels to experiment with it. Please tell us of your
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programs, one could simply express the desired task in logic — leading to simple,
correct and flexible code. However, it turns out that it is not particularly easy
to write involved specifications in logic. Furthermore, just constructing exam-
ples and counter-examples of conjectures can be challenging. One tool to help
with this would be a program that would automatically construct the mod-
els described by logical formulas. This is the genesis of DescriptiveEnvironment
(DE).

For many years, DE was simply a glimmer in Immerman’s eye. When Charles
Jordan was an undergraduate at the University of Massachusetts in the early
2000s, he built a prototype of DE as a senior project. During his early years as
a graduate student in computer science at Hokkaido University, Jordan refined
DE. During a current visit to UMass Amherst, Jordan, along with graduate
student Marco Carmosino, have extended DE.

In this paper we will introduce DE and present its basic functionality. In par-
ticular we will discuss queries: the formalism for expressing properties, trans-
forming structures, and building reductions between problems. We begin by
introducing some terminology from logic and Descriptive Complexity.

2 Descriptive Complexity: Mathematical Background

This background material is condensed from [Imm99]. The reader desiring more
detail should consult that book as well as [EF99, Lib04].

This paper is not meant to be an introduction or survey on Descriptive Com-
plexity. To satisfy the reader’s curiosity we will provide the following very brief
description of this subject. Beyond that, we point the reader to the following
short survey: [Imm95], or to the above three books to find out about the subject
in depth.

Descriptive Complexity began with Fagin’s Theorem which says that a prop-
erty, e.g., a graph property, is in NP iff it is expressible in second-order existential
logic, i.e., NP = SO∃ [Fag74]. Since that time, essentially all important complex-
ity classes have been characterized via standard logical languages.

Two fundamental translations from computational complexity to logic are the
following: (i) The parallel time needed to check whether an input structure has
a property is equal to the depth needed to describe that property in a first-order
inductive definition; and (ii) the amount of memory needed to check whether
an input structure has a property is characterized by the number of distinct
variables needed to describe that property in first-order logic.

In general, the computational complexity of checking whether an input has a
given property can be exactly characterized as the richness of a logical language
needed to express that property.

Thus the secrets of computation can be understood with logic. For this reason,
it is of great use to have tools such as DE to help us manipulate and reason about
the objects in question, i.e., structures and queries.

In the rest of this section we recall standard notation from mathematical logic.
A relational vocabulary, τ = 〈Ra11 , . . . , Rarr , c1, . . . , cs〉 is a tuple of relation
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symbols of given arity and constant symbols. For example, the following DE
commands create the vocabularies “graph”, consisting of one binary relation
symbol, E, and two constant symbols, s, t; and “set” consisting of a single unary
relations symbol, S.

graph is new vocabulary{E:2, s, t}.
set is new vocabulary{S:1}.

A structure with vocabulary τ is a tuple,

A = 〈|A|, RA
1 , . . . , R

A
r , c

A
1 , . . . , c

A
s 〉

whose universe is the nonempty set |A|. For each relation symbol Ri of arity
ai in τ , A has a relation RA

i of arity ai defined on |A|, and for each constant
symbol, cj , c

A
j is an element of |A|.

The following command creates line10, a structure of vocabulary graph that
is a line graph on 10 vertices:

line10 is new structure{graph, 10, E:2 is x2=x1+1, s is 0, t is 9}.

In DE, the universe of a structure with size n+ 1 is {0, 1, . . . , n}. The definition
of E has two free variables, x1 and x2, and the above command defines the edge
relation in line10 to be {(x1, x2) | 0 ≤ x1, x2 ≤ 9, x2 = x1 + 1} (see Fig. 1). In
DE, the definition of a relation symbol of arity a assumes that the free variables
are {x1, . . . , xa}.

The next instruction creates primes100, a structure of vocabulary set that is
the set of all primes less than 100:

primes100 is new structure{set,100, S:1 is (1< x1 &

\A x, y.(x<=x1 & y<=x) : ((x*y=x1)->(x=1|y=1)))}.

The symbols \A and \E denote ∀ and ∃, and so S(x1) holds when x1 is prime.
Of course we can ask DE to print a given relation as follows, or to draw a

given structure (Fig. 1).

primes100.S.

:{(2), (3), (5), (7), (11), (13), (17), (19), (23), (29), (31),

(37), (41), (43), (47), (53), (59), (61), (67), (71), (73), (79),

(83), (89), (97)}

2.1 Queries

A query is any mapping I : STRUC[σ] → STRUC[τ ] from structures of one
vocabulary to structures of another vocabulary, that is polynomially bounded.
A boolean query is a map Ib : STRUC[σ]→ {0, 1}. In Descriptive Complexity,
computations are queries and decision problems are boolean queries.
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Fig. 1. The result of DE command: draw(line10)

Let σ and τ be any two vocabularies where τ = 〈Ra11 , . . . , Rarr , c1, . . . , cs〉. A
first-order query, I : STRUC[σ]→ STRUC[τ ],

I = 〈k, ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs〉

is an r+ s+ 2-tuple consisting of a positive natural number k called the dimen-
sion of the query, plus formulas from the first-order language of σ, defining the
universe of the image structure together with the relations and constants defined
on the image structure.

For each structure A ∈ STRUC[σ], these formulas describe a structure I(A) ∈
STRUC[τ ],

I(A) = 〈|I(A)|, RI(A)
1 , . . . , RI(A)

r , c
I(A)
1 , . . . , cI(A)

s 〉 .

The universe of I(A) is a first-order definable subset of |A|k.

|I(A)| =
{〈b1, . . . , bk〉 ∈ |A|k ∣∣ A |= ϕ0(b1, . . . , bk)

}

(Usually we will take ϕ0 ≡ true, thus letting |I(A)| be the set of all k-tuples
from |A|.)

Each relation R
I(A)
i is a first-order definable subset of |I(A)|ai ,

R
I(A)
i =

{
(〈b11, . . . , bk1〉, . . . , 〈b1ai , . . . , bkai〉) ∈ |I(A)|ai ∣

∣ A |= ϕi(b
1
1, . . . , b

k
ai)

}
.

Each constant symbol c
I(A)
j is a first-order definable element of |I(A)|,

c
I(A)
j = the unique 〈b1, . . . , bk〉 ∈ |I(A)| such that A |= ψj(b

1, . . . , bk) .

For example, the following creates a binary first-order query I from graphs to
sets. The universe formula for I is true, denoted in DE as \t:

I is new query{graph,string,2,\t,S:1 is E(x1,x2)}.

Applying I to line10 results in a set of 100 potential elements, populated by
exactly the 9 edges of line10:

set100 is I(line10).

set100.S.

:{(1), (12), (23), (34), (45), (56), (67), (78), (89)}
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Here is a slightly more interesting query:

R is new query{graph,graph,2,\t,E:2 is (x1=x3 & E(x2,x3))

| (x1+1=x2 & x2=x3 & x3=x4), s is x1=0 & x2=0,

t is x1=max & x2=max}.

Here max denotes the maximum element of the universe. Let REACH be the
set of graphs that have a path from s to t. Observe that for an undirected graph
G, R(G) is in REACH iff G is connected. Thus R is a first-order reduction from
connectivity of undirected graphs to REACH.

In general, if S and T are finite sets of structures of vocabulary σ and τ ,
respectively, and R is a first-order query from STRUC[σ] to STRUC[τ ], then R is
a first-order reduction from S to T iff for all finite structures A ∈ STRUC[σ],

A ∈ S ⇔ R(A) ∈ T .

One of the reasons that complexity theory has been so successful in characteriz-
ing the complexity of problems is that naturally arising computational problems
tend to be complete for important complexity classes such as NP, P, PSPACE,
NSPACE[logn], DSPACE[logn], and a few others. This is true in spite of the
fact that a well-known theorem of Ladner says that for any two of these classes
that are distinct, there are intermediate problems, i.e., in but not complete for
the larger class, but not in the smaller class [Lad75]. Contrast this with the fact
that there are thousands of natural NP-complete problems, many dozens of P-
complete problems, but only about four known natural problems that are in NP
but not known to be in P nor NP complete.

A related phenomenon is that all those natural complete problems, originally
shown complete via fairly powerful reductions, e.g., polynomial-time many-one
reductions, tend to remain complete under first-order reductions. Remarkably,
the extremely weak first-order projections (fop), quantifier-free reductions, and
even quantifier-free projections (qfp) also usually suffice [Imm99, Val82].

For example, consider the first-order reduction R above. It is a qfp. It is
quantifier-free because the definitions of the new relations and constants – E, s,
t – are quantifier free. It is a projection because each bit of the output structure
R(G) depends on at most one bit of the input structure G.

Relatively simple queries suffice to construct many of the objects of inter-
est. Furthermore, it is possible to program via reductions, i.e., build a carefully
constructed and optimized program for a complete problem, C, and then solve
other problems by simply writing the reduction to C. An extremely successful
example of this point of view occurs when C = SAT: We already have general
automatic problem solving via SAT solvers.

Here is another example of the potential value of being able to reason about
simple reductions. (See [Imm99] for details.) The problem REACH mentioned
above is complete via qfps for the complexity class NSPACE[log n] = NL. Let
REACHd be the subset of REACH containing graphs of out-degree at most
one. (See Fig. 1 for a simple example.) REACHd is complete via qfps for
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DSPACE[log n] = L. The following containments are well known and easy to
prove:

L ⊆ NL ⊆ P ⊆ NP .

Everyone knows that is is open whether P = NP, but in fact it is open whether
L = NP. Since three-colorability of graphs (3-COLOR) is complete for NP via
logspace reductions (in fact, fops), it follows that 3-COLOR is reducible to
REACHd via qfps iff L= NP. In symbols,

3-COLOR ≤qfp REACHd ⇔ L = NP

Thus reasoning about first-order and quantifier-free reductions is valuable for
proving upper and lower bounds on complexity.

3 Order-Independent P: A Motivating Example for DE

In 1982 Immerman and Vardi independently characterized polynomial time as
the set of properties expressible in first-order logic plus the power to define new
relations by induction: P = FO(LFP) [Imm86, Var82].

But that was for ordered structures. When a graph or other logical struc-
ture is encoded in a computer, the vertices appear in some order. Furthermore,
algorithms exploit this ordering by searching, for example, along the first edge
leaving a particular vertex. To even the playing field, the languages we use to de-
scribe computational properties, starting with FO, include some arbitrary total
ordering relation on the universe. (This is handled in DE by having the uni-
verse of all structures of size n+ 1 be {0, 1, . . . , n}, where ordering, addition and
multiplication on the integers is available.)

Graph properties are order-independent in the sense that they would not
change if we changed the order in which the vertices are stored in your computer.
However, since programs and formulas in FO(LFP) may use that arbitrary or-
dering, they may be computing a property of the ordered graph that depends
on that ordering and so is not a graph property at all.

It is of great interest to capture order-independent P with a logical lan-
guage. Whether this is possible remains open. If one simply removes ordering
from FO(LFP), the resulting language is too weak. It cannot even count whether
there are an even number of vertices in a graph. It was natural to ask whether
FO(LFP,COUNT) – first-order logic with fixed point and counting quantifiers,
but no ordering – captures order-independent P.

In 1981, Immerman and Eric Lander began investigating this question. It
suffices to check it on graphs. They showed that this result holds for all trees
and almost all graphs even when the formulas in question use only two variables
[IL90].

If a graph is ordered, then each of its vertices has a unique name, i.e., the
first vertex, the second vertex, etc. It is natural to consider graphs with unary
relations representing colorings of the vertices. The color-class size of a graph
is the number of vertices of the most popular color, e.g., if a graph had two
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green vertices, one blue vertex, three red vertices and two yellow vertices then it
would have color-class size 3. In some sense being ordered is the same as being
of color-class size one.

In the paper [IL90], Immerman and Lander also showed that on graphs of
color-class size at most 3, FO(LFP,COUNT) captures order-independent P, and
three variables are necessary and sufficient.

Five years later, Jin-yi Cai (another Cornellian) and Immerman were trying
to extend this result to larger color classes, in particular, trying to figure out
whether this result held for color-class size 4 graphs. It doesn’t; the CFI gadget
discovered by Cai and Immerman and independently Fürer [CFI92], is a basis
for the counterexample.

Fact 1. There is a linear-time computable property of graphs of color-class size 4
that is not expressible in FO(LFP,COUNT). To express this property for graphs
on n vertices in FO(LFP,COUNT) requires Ω(n) distinct variables, while any
fixed formula in FO(LFP,COUNT) only has a bounded number of variables.

Although it remains open whether it is possible to capture order-independent
P, there has been great progress on this problem. An operator giving the rank
of a matrix makes the CFI property expressible, so FO(LFP, rank) is a strict
extension of FO(LFP,COUNT) that is a new candidate for capturing order-
independent P [DGH09]. Furthermore, in a break-through result, Grohe has
shown that FO(LFP,COUNT) captures order-independent P for all classes of
graphs having an excluded minor [Gro10].

4 Basic Functionality of DE

The CFI gadget took many blackboards, pieces of paper, and years to discover.
With DE, we could have found it back then in minutes; today it would only take
seconds. We have already seen a few DE commands. We now explain more of
what DE can do.

As we have seen, DE lets us easily define vocabularies, structures, and queries.
For example, let agraph be the vocabulary of graphs with two colors:

agraph is new vocabulary{A:1, E:2}.

In addition to defining structures explicitly as we did for line10 and set100 in
§2, DE uses the tool Mace43 to generate a structure satisfying a given first-order
sentence. For example, the following command calls Mace4 to create an undi-
rected bipartite graph whose vertices all have degree at least 2:

bip2 is mace(agraph, \A x: \E y1,y2.y1!=y2: (E(x,y1) & E(x,y2)) &

\A x,y: (E(x,y)->(E(y,x) & (A(x)<->~A(y))))).

3 Available at http://www.cs.unm.edu/∼mccune/prover9/
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The result is the smallest such graph: the complete bipartite graph K2,2.
Built into DE are the boolean queries minisat() and zchaff() for calling

SAT solvers MiniSat4 and zChaff5 to check the satisfiability of a propositional
formula.

The vocabulary sat for propositional formulas is

sat is new vocabulary{P:2, N:2}.

Here P (c, xi) means that variable xi occurs positively in clause c and N(c, xi)
means that literal xi occurs in c. The default is that a clause that has no literals
is ignored.

DE makes it easy to use SAT solvers to solve a wide class of problems. For
example, consider the following 3-ary reduction from 3COLOR to SAT:

thrcoltosat is new query{graph, sat, 3, x1<=3,

P:2 is x1=3 & x2=0 & x3=x6 & x4=0 & x5<3,

N:2 is x4=0 & E(x2,x3) & (x1=x5 & (x6=x2 | x6=x3)) & x1<3}.

Here, boolean variable 〈0, c, x〉 means “vertex x is color c”, clause 〈3, 0, x〉 says
that “vertex x is some color” and if E(x, y) then clause 〈a, x, y〉 (for 0 ≤ a ≤ 2)
says that, “then x and y are not both color a”.

We can then use the SAT solver to check 3-colorability. For example, if we
have the DIMACS-format graph myciel3.col6, we can use DE to check if it is
3-colorable:

myciel3 is load("myciel3.col").

mycielfmla is thrcolortosat(myciel3).

minisat(mycielfmla).

:\f

Here mycielfmla is a boolean formula that is satisfiable iff the graph myciel3
is 3-colorable. In this case, it is not satisfiable and thus we can conclude that
myciel3 is not 3-colorable.

DE currently allows formulas from SO∃(TC)7, i.e., in addition to first-order
logic, second-order existential logic, a transitive closure operator, and arithmetic
are all available. Thus queries using TC and even second-order quantification
may be written and evaluated. In the following two boolean queries, reach is
defined using TC and isat is defined using second-order existential quantification.
Not surprisingly, it is faster to use minisat and zchaff than to evaluate isat
directly:

reach is new bquery{graph, TC[x,y:E(x,y)](s,t)}.

isat is new bquery{sat, \E S:1:\A z,x:\E y:(~P(z,x) & ~N(z,x)) |

(P(z,y) & S(y)) |(N(z,y) & ~S(y))}.

4 http://minisat.se
5 Available at http://www.princeton.edu/∼chaff/zchaff.html . Due to licensing
issues, users who wish to use zChaff must download it themselves.

6 Available from http://mat.gsia.cmu.edu/COLOR/instances.html
7 Except when using Mace4, when we are restricted to first-order.
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5 A Motivating Example for ReductionFinder

Fact 2. [Imm88, Sze88] For all s(n) ≥ logn, NSPACE[s(n)] = co-NSPACE[s(n)].

When Immerman proved Fact 2, he was motivated by the fact that REACH is
complete for NSPACE[log n] via quantifier-free projections (qfp) [Imm99]. Thus
he knew that NSPACE[logn] (NL) is closed under complementation iff there is
a qfp from REACH to REACH.

In fact, his original proof of Fact 2 was just that: a dimension 8 qfp from
REACH to REACH. The construction, somewhat analogous to the much sim-
pler reduction R from §2.1, proceeds by stepping through distances d, from 1
to n, and target vertices t, from 0 to n − 1, computing the exact number nd of
vertices reachable from s in distance at most d, using the previously computed
constant, nd−1.

Immerman was struck at the time by how constraining – and thus useful – it
was to have to build a qfp. It seemed either easy or impossible in the sense that
at most steps of building the reduction there was only one possible thing to do.

This feeling led many years later to the building of ReductionFinder, a pro-
gram that repeatedly uses a SAT solver to search for a small quantifier-free
reduction between two problem specifications [CIE10]. At present writing, Re-
ductionFinder is good at finding very small quantifier-free reductions – dimen-
sion 8 is way beyond the current capability. Still we feel that this approach
has enormous potential. We are currently making the interface between DE and
ReductionFinder.

6 Education

One of the differences between experts and students or novices is the experts’
ability to visualize concepts relevant to their field. This ability aids in the con-
struction and interpretation of diagrams, which allow communication between
experts and discovery of new results. Students do not gain as much knowledge
from examining domain-specific diagrams as experts do; they simply lack the
context and skills to interpret diagrams.

In Descriptive Complexity, our diagrams are generally graphs depicting parts
of logical structures before and after queries, or gadgets like the CFI construction.
There are many high-quality open-source tools for drawing and labeling graphs.
We have implemented a script that transforms the saved output of DE structures
into files for GraphViz8.

To make the process as easy as possible, we have added a “draw” command to
DE, so that users can make changes to defined structures and then immediately
observe their effect. This process mimics the visualization skills of the expert,
and will allow students to gain a deeper understanding of how structures are
defined by logical formulas.

8 http://www.graphviz.org/
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In the future, we will extend “draw” to operate on queries, showing a before-
and-after view of the logical structure, and a typeset presentation of the relevant
logical formulas in one image. This will not only help students understand exam-
ple queries through modifying and plotting them, it will help researchers examine
and verify the results of more complex queries.

Ehrenfeucht-Fräıssé games and their generalizations are a vital tool for De-
scriptive Complexity. It would be easier to teach students to play these games
if we had software to play them automatically. We will build an EF-game en-
gine for DE, because it is convenient to do so: all of the relevant datatypes are
already available. Playing against an automated Samson or Delilah, each step
of the game will be drawn to the screen. We expect that students will develop
an intuition for EF-games and their generalizations faster and easier when a
computer implementation of the game with graphics is readily available.

In the longer term, DE can be used as the backend for a web-based system.
This would be the most convenient and easy format for students, and would
allow the use of a rich web UI for playing EF games and playing with example
queries and structures.

7 Conclusions

We have explained some of the motivations for building DE, together with some
of its functionality. We encourage anyone to use it. Please send us your examples,
questions, suggestions, improvements, and extensions.

In the near future we anticipate adding more features and visualization tools.
In particular, we can hardly wait until DE is able to play Ehrenfeucht-Fräıssé
games. It will also aid in visualizing a query by drawing the input and output
structures, and letting the user choose points in the input or output and having
the display highlight where they lead to or come from. We will add sliders to
help students and researchers visualize the computations of transitive closures
and fixed points.

There are many great programs and systems related to logic that are being
developed and used that we have omitted in this introduction to DE. Our plan
is to have an easy-to-use, extensible testbed. If there are great tools available,
such as SAT solvers, Mace, ReductionFinder, that we can call to make DE more
useful, then we are delighted to do so. The intent of DE is to make the research
and teaching of logical methods easier and more fun.
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Abstract. The quantified constraint satisfaction problem (QCSP) is the
problem of deciding, given a structure and a first-order prenex sentence
whose quantifier-free part is the conjunction of atoms, whether or not
the sentence holds on the structure. One obtains a family of problems by
defining, for each structure B, the problem QCSP(B) to be the QCSP
where the structure is fixed to be B. In this article, we offer a viewpoint
on the research program of understanding the complexity of the problems
QCSP(B) on finite structures. In particular, we propose and discuss a
group of conjectures; throughout, we attempt to place the conjectures in
relation to existing results and to emphasize open issues and potential
research directions.

This article is dedicated to Dexter Kozen on the occasion of his 60th birthday.
Congratulations and thanks, Dexter, for all that you have given us.

1 Introduction

The constraint satisfaction problem (CSP) is a general computational problem
that involves deciding, given a set of constraints on a set of variables, whether or
not there is an assignment to the variables satisfying all of the constraints. Prob-
lems from many areas of computer science can be formulated within this general
framework, including graph coloring problems, boolean satisfiability problems,
and problems from temporal and spatial reasoning. The CSP can be formal-
ized logically as the problem of deciding, given a prenex {∃,∧}-sentence Φ and a
structure B, whether or not Φ holds on B. By a {∃,∧}-sentence, we mean a first-
order sentence built from atoms, the connective ∧, and existential quantification.
Deciding such a sentence in prenex form amounts to deciding if there is an as-
signment to the variables (each of which is existentially quantified) that satisfies
all of the atoms, which can be thought of as constraints on the variables. The
quantified constraint satisfaction problem (QCSP) is the natural generalization
of the CSP in which universal quantification is also permitted: it is the problem
of deciding, given a prenex {∀, ∃,∧}-sentence Φ and a structure B, whether or
not Φ holds on B. The addition of the universal quantifier permits the expression
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of a wider range of problems, including problems from quantified propositional
logic and game theory. The greater expressiveness of the QCSP comes at the cost
of higher computational complexity: if one considers finite structures, the CSP
is in general NP-complete, while the QCSP is in general PSPACE-complete.

For each of these two problems, one can obtain restricted cases of interest by
considering the problem relative to a fixed structure. Formally, for each structure
B, define CSP(B) (respectively, QCSP(B)) to be the problem of deciding, given
a {∃,∧}-sentence Φ (respectively, {∀, ∃,∧}-sentence Φ), whether or not Φ holds
on B. As examples, consider 2-SAT and Horn-SAT, two well-known polynomial-
time tractable cases of the boolean satisfiability problem. One can capture these
two problems as problems of the form CSP(B), by defining appropriate structures
B; correspondingly, the quantified generalizations of these problems, Quantified
2-SAT and Quantified Horn-SAT, can each be formulated as a problem of the
form QCSP(B).

A research direction with roots in seminal articles by Schaefer [31] and Feder
and Vardi [19] is to understand the complexity behavior of the problem family
CSP(B) on finite structures B. Schaefer [31] classified the complexity of CSP(B)
on two-element structures: he described the two-element structures B such that
CSP(B) is in P, showing that for all other two-element structures B, the problem
CSP(B) is NP-complete. Feder and Vardi [19] studied the problems CSP(B) on
general finite structures, and famously conjectured that this problem family ad-
mits a dichotomy in that each problem therein is either in P or is NP-complete. In
the 90s, Jeavons and co-authors pioneered an algebraic approach to studying the
problems CSP(B), which involves associating an algebra to each finite structure
B, and then using properties of the algebra of B to gain insight into and derive
results on the complexity of CSP(B); see for example [24, 23, 22, 8]. Although
this article’s focus is on finite structures, it can be remarked that this alge-
braic approach has been developed by Bodirsky and co-authors for ω-categorical
structures [5, 4, 3].

The algebraic approach to studying the family CSP(B) has been the subject
of focused research in the 00s which continues to the present (see for example [9,
26, 27, 1, 21] and the references therein). As the set of tools for understanding
this family has developed, researchers have also studied many variants of the
CSP with the aim of giving full complexity classifications on all finite structures
B. One example variant is the QCSP; as another, one can name the counting
CSP, wherein one wants to count the number of satisfying assignments, in place
of deciding if one exists [10]. (See [25, 18, 7] for further examples.) Complexity
classification results typically give broad sufficient conditions for tractability,
intractability, or (more generally) completeness for a complexity class; they can
often be used as the basis for analyzing the complexity of further problems.

In this article, we offer a viewpoint on the research direction of understanding
the complexity of the problem family QCSP(B) over finite structures. In partic-
ular, we propose and discuss a group of conjectures concerning the complexity
of the problems QCSP(B). Throughout our presentation, we attempt to place
the conjectures in relation to existing results, and to emphasize open issues and
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potential research directions. One of the leading protagonists of these conjectures
is a property of algebras called the polynomially generated powers (PGP) prop-
erty: essentially, an algebra A has this property when its powers A,A2,A3, . . .
have generating sets of polynomial size. This property is a close relative of the
few subpowers property, another property of algebras that concerns a growth rate
in the powers of an algebra and which has given insight into the CSP [2, 21];
see [17] for a discussion. We point out that in the case of the CSP, a precise
conjecture predicting the boundary of the P/NP-complete dichotomy was posed
in the early 00s, in the conference version of [8]; inside P, a picture of the sit-
uation has emerged with demonstrations of general hardness criteria for sub-P
complexity classes [27].

2 Preliminaries

We study relational first-order logic. A signature is a set of relation symbols,
each of which has an associated arity. A relational structure B over a signature
σ consists of a set B called the universe and a relation RB ⊆ Bk for each relation
symbol R ∈ σ; here, k denotes the arity of R. We will frequently use the symbol
B to denote a relational structure with universe B. In this article, we focus on
finite relational structures, by which is meant structures having finite universes.
Let B be a structure on signature σ. We use B∗ to denote the expansion of
B containing all constant relations; precisely, B∗ is a structure over signature
σ∗ ⊇ σ with universe B such that (1) for each b ∈ B, there exists a relation
symbol Rb ∈ σ∗ of arity 1 where RB∗

b = {b}, and (2) each relation symbol in
σ∗ \ σ is of the form Rb where RB∗

b = {b} and such that for no other relation
symbol S ∈ σ∗ does it hold that SB∗

= {b}. Note that we have (B∗)∗ = B∗.
Let σ be a signature. We define a quantified constraint formula over σ to be

a first-order formula of the form Q1v1 . . . Qnvnφ where each Qi ∈ {∀, ∃} is a
quantifier, each vi is a variable, and φ is the conjunction of σ-predicate appli-
cations. By a σ-predicate application, we mean a formula R(w1, . . . , wk) where
R ∈ σ, the wi are variables, and k is the arity of R. We define a constraint
formula to be a quantified conjunctive formula that does not make use of uni-
versal quantification, that is, where all quantifiers are existential. We will use
the term (quantified) constraint sentence to refer to a (quantified) constraint
formula having no free variables.

The CSP (QCSP) is the problem of deciding, given a (quantified) constraint
sentence Φ and a structure B, whether or not B |= Φ. Each structure gives rise to
a restricted version of each of these problems, defined as follows. For a structure
B, the problem CSP(B) is the problem of deciding, given a constraint sentence
Φ, whether or not B |= Φ; similarly, the problem QCSP(B) is the problem of
deciding, given a quantified constraint sentence Φ, whether or not B |= Φ. We will
be interested in studying the QCSP where, in addition to fixing the structure,
the number of quantifier alternations is bounded. We define a representative
sequence of problems as follows. For each k ≥ 1, we define Π2k-QCSP(B) to
be the restriction of the problem QCSP(B) to quantifier prefixes that are Π2k.



38 H. Chen

Note that the only notion of complexity-theoretic reduction that we will make
use of in this paper is many-one polynomial-time reduction.

Let B be a nonempty set, let f : Bn → B be an n-ary operation on B, and
let R ⊆ Bk be a k-ary relation on B. We say that f is a polymorphism of R
(and that f preserves R) if for every length n sequence of tuples t1, . . . , tn ∈ R,
denoting the tuple ti by (ti,1, . . . , ti,k), it holds that the tuple

f(t1, . . . , tn) = (f(t1,1, . . . , tn,1), . . . , f(t1,k, . . . , tn,k))

is in R. We extend this terminology to relational structures, and say that an
operation f is a polymorphism of a relational structure B if f is a polymorphism
of every relation of B.

For our purposes, an algebra A is a pair (A,F ) consisting of a non-empty set A
called the universe and a set F of finitary operations on A. Let A = (A,F ) be an
algebra. A subalgebra of A is an algebra of the form (B,F |B), where B ⊆ A and
B is preserved by all operations in F . By F |B , we mean the set {f |B | f ∈ F},
where f |B denotes the restriction of the operation f to the set B. The subalgebra
(of A) generated by a subset X ⊆ A is defined to be the intersection of all A-
subalgebras containing X . We say that a subset X ⊆ A generates an algebra
A = (A,F ) if A itself is the subalgebra of A generated by X . We will frequently
use the symbol A to denote an algebra (A,F ).

Our focus in this paper is on finite structures of the form B∗, that is, finite
structures having a relation for each constant. We thus define AB, the algebra
for structure B, to be the algebra (B, IPol(B)) where IPol(B) denotes the set
of all idempotent polymorphisms of B. Recall that an operation f : Bn → B
is idempotent if for all b ∈ B, it holds that f(b, . . . , b) = b. Note that for any
structure B, it holds that IPol(B) = IPol(B∗) and hence AB = AB∗ . For a finite
structure B∗, the set of idempotent polymorphisms IPol(B∗) can be connected
to the complexity of QCSP(B∗); see [6].

In the case of the CSP, it is known that for each finite structure A, there exists
a finite structure B such that the problems CSP(A), CSP(B∗) are polynomial-
time interreducible [8]. In the context of CSP complexity classification, this result
justifies focusing on structures having constants, that is, structures of the form
B∗. In contrast, for the QCSP, no such passage to structures having constants
is known. From this author’s perspective, any results contributing to an under-
standing of whether or not such a passage exists would be highly appreciated.
Perhaps the discussion in the last section of this article will provide some clues!

3 The Polynomially Generated Powers Property

For an algebra A, let d(A) denote the smallest size of a generating set for A. The
sequence (d(A), d(A2), d(A3), . . .) is called the d-sequence of an algebra A. Study
of the d-sequence goes back to work of Wiegold and co-authors [32–35, 29, 36],
which focused on groups and semigroups. Recent years have seen a revival of
interest in the d-sequences of algebras; see for example [30, 20]. Previous work by
the present author [17] connected the complexity of QCSP(B) with polynomially
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bounded growth of the d-sequence of AB; this mode of growth is formalized as
follows.

Definition 1. An algebra A has the polynomially generated powers (PGP)
property if there exists a polynomial p(n) (on the natural numbers) such that
for all n ≥ 1, there exists a subset Xn ⊆ An of size |Xn| ≤ p(n) that generates
the algebra A

n.

In particular, one can derive implications for the QCSP when the polymorphism
algebra has the PGP property in an effective sense; effectiveness of this property
is formalized as follows.

Definition 2. An algebra A has the effective PGP property if there exists an
algorithm that, given a natural number n ≥ 1, outputs in polynomial time (in n)
a subset Xn ⊆ An that generates the algebra A

n.

Remark 1. We will discuss the effective PGP property only on finite algebras.
We require that the algorithm in the definition outputs each set Xn in the form
of an explicit listing of n-tuples. Since in polynomial time it is only possible to
output polynomially many tuples, the effective PGP property implies the PGP
property.

Example 1. Consider an algebra A with universe B having a binary operation
f : B2 → B with respect to which there is an identity element, that is, such that
there exists e ∈ B such that for all b ∈ B, it holds that f(b, e) = f(e, b) = b.
We will argue that such an algebra A has the PGP. Monoids and groups are
examples of algebras having this property.

For each n ≥ 1, for each i ∈ {1, . . . , n}, and for each b ∈ B, define t[n, i, b] to
be the tuple in Bn whose ith entry is equal to b, and which has all other entries
equal to e. For each n ≥ 1, define Tn to be the set

{t[n, i, b] | i ∈ {1, . . . , n}, b ∈ B}.
We claim that, with respect to the algebra A, the set Tn generates Bn. Let
(b1, . . . , bn) be an arbitrary element of Bn. By f -multiplying together the tuples
t[n, 1, b1], t[n, 2, b2], . . . , t[n, n, bn] in any order, one arrives at (b1, . . . , bn), estab-
lishing the claim. We have |Tn| ≤ n|B|, that is, the size of the sets Tn exhibits
linear growth, and hence the algebra A has the PGP with respect to the polyno-
mial p(n) = n|B|. Moreover, one can readily devise a polynomial-time algorithm
that, given n, outputs Tn, and thus the algebra A has the effective PGP.

Recall that a semilattice operation is a binary operation that is associative, com-
mutative, and idempotent. On the Boolean universe {0, 1}, there are two semi-
lattice operations, the Boolean AND (∧), which has identity element 1, and the
Boolean OR (∨), which has identity element 0. Consider the 3-element algebra
A = ({a, b, c}, {f}) where f : {a, b, c}2 → {a, b, c} is defined by the following rule:
f(x, y) = x if x = y, and f(x, y) = c otherwise. The operation f is a semilattice
operation. It can be verified that, for any generating set Tn of An, it holds that
Tn ⊇ {a, b}n; this follows from the fact that if f is applied to two n-tuples s, s′ and



40 H. Chen

the result is a tuple t ∈ {a, b}n, then s = s′ = t. Consequently, any such generat-
ing set Tn must have |Tn| ≥ 2n, and this 3-element algebra A does not have the
PGP. More generally, it can be shown that if a semilattice operation f : B2 → B
does not have an identity element, then for an appropriate choice of distinct ele-
ments a, b ∈ B one again has that any generating set of Bn must contain {a, b}n,
and thus that the algebra (B, {f}) does not have the PGP. �
The following theorem directly connects the QCSP to the effective PGP property.
Essentially, it states that when the algebra AB has this property, the bounded-
alternation QCSP on B can be reduced to CSP(B∗) and is hence in NP.

Theorem 1. [17] Let B be a finite relational structure on a finite signature. If
the algebra AB has the effective PGP property, then for all k ≥ 1, the problem
Π2k-QCSP(B) reduces to CSP(B∗) and is in NP.

We give an explanation of how this theorem is proved.

Proof idea of Theorem 1. It suffices to prove the result under the assumption
that B = B∗, which is what we do. The proof is an induction argument showing
that, for all k ≥ 1, there exists a polynomial-time algorithm that converts a Π2k

quantified constraint formula Φ to a constraint formula Φ′ that is equivalent in
the natural sense: a B-assignment f to the free variables satisfies Φ over B if
and only if it satisfies Φ′ over B.

For k = 1, this is done as follows. Let Y denote the universally quantified

variables in Φ. A generating set {t1, . . . , tm} for A
|Y |
B is computed in polynomial

time using the algorithm giving the effective PGP property; each element ti in
the set can (and will!) be naturally viewed as a mapping from Y to B. For each i
from 1 to m, a formula Φi is created from Φ by changing all universal quantifiers
to existential quantifiers, and then conjoining

∧
y∈Y Rti(y)(y) to the quantifier-

free part. In the formula Φi, the universally quantified variables (of Φ) are forced
to be set according to the generator ti. The desired formula Φ′ is (the prenexing
of) the formula

∧m
i=1 Φi. The point is that to determine the truth of Φ (relative

to B and an assignment to the free variables), in lieu of considering all possible
assignments to the universally quantified variables Y , one can consider just the
assignments ti from the generating set. (We note that verifying this makes use
of the idempotence of the operations of AB.) In essence, having a polynomially-
sized generating set allows us to short-cut the consideration of the exponentially
many assignments to the universally quantified variables.

The induction is argued as follows. Suppose that one has the result for k; we
want to show the result for k+1. Given aΠ2(k+1) quantified constraint formula Φ,
by removing the outermost two quantifier blocks, we obtain aΠ2k formula Φ2. We
use the algorithm forΠ2k formulas, which exists by induction, to obtain an equiv-
alent constraint formula. Taking this constraint formula and putting back the two
quantifier blocks that were removed, we obtain a Π2 formula, which can then be
handled using the algorithm presented for the case k = 1. The overall algorithm
in this case, modulo some simple syntactic manipulations, is the composition of
two polynomial-time algorithms, and is hence itself polynomial-time. �
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The argument just given certainly allows one (under the assumption of the
effective PGP property) to translate any instance Φ of QCSP(B) to a truth-
equivalent instance of CSP(B∗): simply determine the lowest k such that Φ is
Π2k, and then apply the algorithm given for Π2k formulas. However, it is worth
noting that the action of this translation on all instances of QCSP(B) is not in
polynomial time. We give a brief explanation as to why. Consider an algebra
A that has no generating set of size 1, that is, where every generating set has
size greater than or equal to 2. Let us examine how the translation acts on a
Π2n formula of the form ∀y1∃x1 . . .∀yn∃xnφ. The translation works from the
inside out; first, the subformula ∀yn∃xnφ is converted to a constraint formula
φ1. The resulting constraint formula arises as a conjunction (of copies of φ)
over a generating set for A, and so by assumption has size at least 2. Then,
the translation converts the formula ∀yn−1∃xn−1φ1 to a constraint formula φ2;
again, the result is a conjunction of copies of φ1 over a generating set for A,
and so has size at least 4. Continuing to argue in this way, one obtains that the
size of each intermediate formula φi has size at least 2i, and the final constraint
formula φn has size at least 2n.

Our first conjecture is that each finite algebra has either the PGP property
or has a d-sequence with exponential growth; the latter property is formalized
as follows.

Definition 3. An algebra A has the exponentially generated powers (EGP)
property if there exists a real number b > 1 such that the mapping (on the
positive natural numbers) that takes n to d(An) is Ω(bn).

Note that a dichotomy between the PGP property and the EGP property cannot
be taken for granted, as there are growth rates (such as nlogn) that are neither
polynomial nor exponential, according to the definitions here.

Conjecture 1. Each finite algebra A either has the PGP property or has the EGP
property.

Support for this conjecture can be found, for example, in the article of Wiegold
[36] on semigroups, and in previous work relating the PGP property to the
QCSP, where a class of 3-element algebras was studied [17].

A parenthesis. We will, later in this paper, conjecture that absence of the
PGP property leads to coNP-hardness of the QCSP (see Conjecture 3 and Re-
mark 4). Intuitively speaking, existing coNP-hardness results in this vein (which
sometimes apply to structures having a tractable CSP) use a block of universally
quantified variables to induce the consideration of an exponentially large search
space, in such a way that the quantified constraint sentence is true if and only
if there is no object of desirable type in the search space. Conjecture 1 is alge-
braic: we are not aware of any direct implications that it would have for QCSP
complexity. But, could belief in the computational Conjecture 3 support belief
in the algebraic Conjecture 1?
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4 Bounded Alternation

In this section, we present and discuss three conjectures in the setting of bounded
alternation. The first we view as quite innocuous: it states that, on finite algebras,
the PGP property is always effective. The truth of this conjecture would allow
us to directly connect the PGP property to the bounded-alternation QCSP.

Conjecture 2. For every finite algebra A, if A has the PGP property, then A has
the effective PGP property.

Remark 2. From a proof of Conjecture 2, one would be able to simplify the
statement of Theorem 1: one could remove the effectiveness assumption on the
PGP property.

Remark 3. Previous work on the QCSP [17] identified a property on algebras
called switchability which implies the PGP; in fact, a look at the generating sets
given by switchability allows one to readily verify that switchability implies the
effective PGP. Within a particular family of 3-element algebras, it was shown
that the PGP implies switchability, providing evidence for Conjecture 2. We
believe that it could be of interest to investigate whether or not all algebras
having the PGP property are switchable.

So, Conjecture 2 predicts that the presence of the PGP property places the
bounded-alternation QCSP in NP. Our next conjecture predicts that the PGP
property is, in fact, the only explanation for this QCSP being in NP, on structures
having the form B∗.

Conjecture 3. Let B be a finite relational structure on a finite signature. If the
algebra AB does not have the PGP property, then there exists k ≥ 1 such that
Π2k-QCSP(B∗) is coNP-hard.

Remark 4. Examples of coNP-hardness results for the QCSP which provide ev-
idence for Conjecture 3 can be found in the articles [11–13].

The two conjectures given in this section (thus far) predict when the bounded-
alternation QCSP on structures B∗ will be in NP. Indeed, these conjectures pre-
dict that if the sequence Π2k-QCSP(B∗) is in NP, then the algebra AB = AB∗

has the PGP and each problem in this sequence reduces to (and is hence equiva-
lent to) CSP(B∗), as in Theorem 1. Outside of NP, one can observe two different
modes of complexity behavior (for the QCSP under bounded alternation). One
is coNP-completeness. An example of this behavior is given by certain struc-
tures preserved by semilattice operations without an identity element, for which
one has, for each k ≥ 1, coNP-completeness of Π2k-QCSP(B∗): coNP-hardness
comes from [11], and containment in coNP follows from results in [15]. Another
behavior is that the complexity increases unboundedly with the prefix class; this
happens already in the two-element case, see [16, Section 7].

We believe that it should also be of interest to study when the bounded-
alternation QCSP can be placed in coNP. We have the following conjecture
concerning this matter.
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Conjecture 4. Let B be a finite relational structure on a finite signature. If the
problem CSP(B∗) is in P, then for all k ≥ 1, the problem Π2k-QCSP(B∗) is in
coNP.

Remark 5. A previous article [15] gives coNP inclusion results for the bounded
alternation QCSP in a model that is more general than Π2k-QCSP(B∗) in that
the restriction to the structure is applied only to the existentially quantified vari-
ables. The technology developed there should be of help in trying to establish
Conjecture 4. The coNP inclusion results presented therein that apply to struc-
tures of the form B∗, such as the results on structures preserved by semilattice
operations, apply directly to the problems Π2k-QCSP(B∗) and give evidence for
Conjecture 4.

For a structure B∗, when neither the NP upper bound predicted by Conjecture 2
nor the coNP upper bound predicted by Conjecture 4 applies, we believe that the
complexity of the problemsΠ2k-QCSP(B∗) should increase unboundedly; perhaps
in this case, for each k ≥ 1, one has Πp

2k-completeness of Π2k-QCSP(B∗), a be-
havior that can be observed in the case of two-element structures [16, Section 7].

5 Unbounded Alternation

In previous articles [14, 17], with the motivation of giving positive QCSP com-
plexity results, we identified and studied properties of algebras called collapsi-
bility and switchability; switchability is a generalization of collapsibility. Each of
these properties implies both the effective PGP property and a reduction from
the QCSP to the CSP akin to that given by Theorem 1, but in the general setting
of unbounded alternation. Intuitively, the reductions exploit the particular form
of generating sets that give the PGP property. Based on this work and as an
extension of Conjecture 2 (with Theorem 1), we propose that the PGP property
implies a QCSP-to-CSP reduction under unbounded alternation.

Conjecture 5. Let B be a finite relational structure on a finite signature. If the
algebra AB has the PGP property, then QCSP(B) reduces to CSP(B∗), and
QCSP(B) is in NP.

Remark 6. Since AB = AB∗ and QCSP(B) trivially reduces to QCSP(B∗), in
order to prove Conjecture 5, it suffices to verify it on structures of the form B∗.

As examples showing how the PGP property can be linked to the QCSP com-
plexity properties of Conjecture 5, we revisit two classes of structures whose
QCSP is already known to be in NP [28]. We show that each structure therein
has an algebra that is collapsible, from which it follows that the algebra has the
PGP property and the structure enjoys a QCSP-to-CSP reduction [17].

Example 2. (Bipartite graphs) Let σ = {E} be the signature containing a single
binary relation. We consider a structure B on this signature to be a bipartite
graph if EB is symmetric and there exists a partition B = B0∪B1 of the universe
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B of B such that EB ⊆ (B0×B1)∪(B1×B0). It is known that for each bipartite
graph B, the problem QCSP(B) is in P [28].

Let w : {0, 1}5 → {0, 1} be the operation that, given a 0/1 tuple of length 5,
outputs the unique element in {0, 1} that occurs 3 or more times in the tuple;
the operation w can be thought of as returning the “majority winner”, given
a tuple of 5 votes. Let mid be the operation defined on non-empty subsets of
{1, 2, 3, 4, 5} that, given a set of size n, ranks the elements in the set as a1 <
· · · < an, and outputs the element a�n

2 �. Intuitively, the operation mid outputs
the “middle” element in a given set according to the natural <-ranking; on sets
of even cardinality, the lower of the two elements in the middle is preferred. For
example, mid({1, 4, 5}) = 4 and mid({1, 2, 4, 5}) = 2.

We now define an operation p : B5 → B, relative to a partition B = B0 ∪B1,
as follows. Let s : B → {0, 1} be the mapping that, given b ∈ B, indicates which
side of the partition B0 ∪ B1 the element b lies in; that is, s is defined to be
the unique mapping such that for all b ∈ B, it holds that b ∈ Bs(b). Define
p : B5 → B to be the operation p(b1, . . . , b5) = bp′(b1,...,b5), where

p′(b1, . . . , b5) = mid({i | s(bi) = w(s(b1), . . . , s(b5))}).
In words, the operation p computes the set of coordinates among {1, . . . , 5} that
support the majority winner of the given elements (under s); it then takes the
middle coordinate in that set, and projects the given tuple onto that coordinate.
The operation p is clearly idempotent.

We show that p is a polymorphism of any bipartite graph B. Suppose that
(b1, b

′
1), . . . , (b5, b

′
5) ∈ EB. We want to show that (p(b1, . . . , b5), p(b′1, . . . , b

′
5)) ∈

EB. We claim that p′(b1, . . . , b5) = p′(b′1, . . . , b′5), which suffices. Since B is bi-
partite, for each i (ranging from 1 to 5), we have s(bi) �= s(b′i). It follows that
w(s(b1), . . . , s(b5)) �= w(s(b′1), . . . , s(b′5)) and that

{i | s(bi) = w(s(b1), . . . , s(b5))} = {i | s(b′i) = w(s(b′1), . . . , s(b′5))},
from which the claim follows.

Collapsibility is a property on algebras which was introduced in the study of
the QCSP; collapsibility of an algebra AB implies a reduction from QCSP(B) to
CSP(B∗) [14]. For an operation f : Ak → A, a coordinate i ∈ {1, . . . , k}, and
an element a ∈ A, let fai : Ak−1 → A be the operation obtained by f by fixing
the ith argument of f to be the element a. It has been shown [14, Lemma 5.13]
that an algebra is collapsible if it has an idempotent operation f : Ak → A and
there exists an element a ∈ A such that each of the k operations fai is surjective.
We use this fact to prove the collapsibility of AB when B is a bipartite graph,
thus showing that for any bipartite graph B, it holds that QCSP(B) reduces
to CSP(B∗). Fix an element c ∈ B0. We show that each of the 5 operations
pc1, . . . , p

c
5 is surjective; by the cited lemma, this gives the desired reduction.

We first consider the case i �= 3; in this case, we claim that pci is idempotent,
that is, for all b ∈ B, it holds that pci (b, b, b, b) = b. The value pci (b, b, b, b) is
equal to the value of p on the 5-tuple t that is equal to c at coordinate i, and
equal to b elsewhere. We have that p′(t) is equal to mid({1, 2, 3, 4, 5}) = 3 or



Meditations on Quantified Constraint Satisfaction 45

mid({1, 2, 3, 4, 5}\{i}) depending on whether or not s(b) = 0; in either situation,
p′(t) is not equal to i, and the claim follows.

We now consider the case i = 3. Let b ∈ B be an element; we want to show
that b is in the image of pc3. If s(b) = 1, then we show that pc3(b, b, b, b) =
b. We have pc3(b, b, b, b) = p(b, b, c, b, b). Observe that the value p′(b, b, c, b, b) is
equal to mid({1, 2, 4, 5}) = 2, so p(b, b, c, b, b) = b. If s(b) = 0, we argue as
follows. Fix d to be an element of B1. We show that pc3(b, b, b, d) = b. We have
pc3(b, b, b, d) = p(b, b, c, b, d). The value p′(b, b, c, b, d) is equal to mid({1, 2, 3, 4}) =
2, so p(b, b, c, b, d) = b. �
Example 3. (Disconnected structures) Let us say that a structure B on signature
σ is disconnected if there exists a partition B0 ∪B1 of B composed of two non-
empty sets such that for each symbol R ∈ σ and for each tuple (b1, . . . , bk) ∈ RB,
it holds that either {b1, . . . , bk} ⊆ B0 or {b1, . . . , bk} ⊆ B1.

Let B be a disconnected structure. We make use of the operations defined in
the previous example (Example 2), but assume now that they are with respect
to a partition B = B0 ∪ B1 that witnesses the disconnectivity of B. We show
that the operation p : B5 → B is a polymorphism of B. By the discussion
on collapsibility in the previous example, this yields that QCSP(B) reduces to
CSP(B∗). Let (b11, . . . , b

1
k), . . . (b51, . . . , b

5
k) be tuples in a relation RB. We want to

show that (p(b11, . . . , b
5
1), . . . , p(b

1
k, . . . , b

5
k)) ∈ RB. We claim that p′(b11, . . . , b

5
1) =

· · · = p′(b1k, . . . , b
5
k), which suffices. For each i (from 1 to 5), we have s(bi1) =

· · · = s(bik). For values of j ranging from 1 to k, the values w(s(b1j ), . . . , s(b
5
j))

are all equal, and the sets {i | s(bij) = w(s(b1j ), . . . , s(b
5
j))} are all equal; the claim

follows. �
Remark 7. Completing the complexity classification of the QCSP on undirected
graphs, which was initiated in [28], is an open issue. A complementary objective
that we believe could be of interest is to understand which algebras coming from
graphs have the PGP.

As an analog of Conjecture 3 in the unbounded alternation setting, we conjecture
that here, lack of the PGP property implies PSPACE-completeness of the QCSP.
Again, we form a conjecture only on structures of the form B∗.

Conjecture 6. Let B be a finite relational structure on a finite signature. If the
algebra AB does not have the PGP property, then the problem QCSP(B∗) is
PSPACE-complete.

Remark 8. A non-trivial PSPACE-completeness result for a problem QCSP(B)
can be found in [6, Section 6.2]. In particular, such a complexity result is given for
certain structures preserved by semilattices without an identity element (recall
Example 1). Identifying general sufficient conditions for the PSPACE-hardness
of QCSP(B) is an issue for future research.

Our conjectures focus on structures having constants, that is, structures having
the form B∗. We do not yet dare form conjectures on general structures! On
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a structure B∗, when one has a reduction from QCSP(B∗) to CSP(B∗), these
two problems are interreducible and have the same complexity (as CSP(B∗) is
a special case of and reduces to QCSP(B∗)). Note that the conjectures in this
section, along with the conjecture that the CSP admits a dichotomy, predict a
P/NP-complete/PSPACE-complete trichotomy in the complexity of the prob-
lems QCSP(B∗): in the presence of the PGP property, the problem QCSP(B∗)
is predicted to be interreducible with CSP(B∗) (Conjecture 5); otherwise, the
problem QCSP(B∗) is predicted to be PSPACE-complete (Conjecture 6).

In Examples 2 and 3, we saw structures for which collapsibility can be used
to give a reduction from QCSP(B) to CSP(B∗). We now show, via a concrete
example, that when B does not have constants, it is possible that there is such a
reduction but that CSP(B∗) does not characterize the complexity of QCSP(B):
in passing from the problem QCSP(B) to CSP(B∗), one can see a jump in com-
plexity.

Example 4. (Jump from QCSP(B) to CSP(B∗)) Let σ be the signature {S}
where S is of arity 3. Let A be the structure on σ with universe {0, 1} and
where SA = {(a, b, c) ∈ {0, 1}3 | a = b or b = c}. Let B be the structure on
σ with universe {0, 1, 2} and where SB = SA ∪ {(2, 2, 2)}. The structure B is
clearly disconnected via the partition B = {0, 1}∪{2}, and hence the discussion
in Example 3 implies that there is a reduction from QCSP(B) to CSP(B∗). We
show that the problem QCSP(B) is polynomial-time decidable, but the problem
CSP(B∗) is NP-complete.

We first show that the problem CSP(B∗) is NP-complete. We reduce from
the problem CSP(A∗), which is NP-complete by Schaefer’s theorem. Given an
instance Φ = ∃v1 . . . ∃vnφ of CSP(A∗), where φ is quantifier-free, the reduction
creates the instance Φ′ defined as

∃v1 . . . ∃vn∃c0∃c1(φ ∧R0(c0) ∧R1(c1) ∧
n∧

i=1

S(c0, vi, c1)).

In this latter instance, the variables c0 and c1 are assumed to be fresh variables
that do not occur among v1, . . . , vn; via the formulas R0(c0) and R1(c1), they
are forced to the values 0 and 1. The formulas S(c0, vi, c1) force each variable vi
to take on the value 0 or 1. (Note that this forcing can also be done with just
one of the constants c0, c1; for instance, the formula S(c0, c0, vi) also forces the
variable vi to take on the value 0 or 1.) With these facts in mind, it is readily
verified that Φ is true on A∗ if and only if Φ′ is true on B∗.

We now show that QCSP(B) is polynomial-time decidable. Given an instance
Φ of QCSP(B), let GΦ be the undirected graph whose vertices are the variables
of Φ and where an edge {u, v} is present if and only if u and v occur together
in a predicate application. For each connected component C of GΦ, we define
C′ to be the set obtained by removing the variable that is quantified first in C.
We claim that Φ is true if and only if the following condition holds: for each
connected component C of GΦ, the set C′ contains only existentially quantified
variables. This suffices, since the condition is readily checkable in polynomial
time.
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We verify the claim as follows. We view Φ as a game between two players, uni-
versal and existential, that set the respectively quantified variables in the order
given by the quantifier prefix; the universal player tries to falsify the quantifier-
free part φ of Φ, whereas the existential player tries to satisfy φ. If the condition
holds, then for each connected component C, by setting all of the variables in
C ′ appropriately, the existential player can guarantee that all variables in C are
set to the same value. This suffices to satisfy φ, since all three constant tuples
(0, 0, 0), (1, 1, 1), (2, 2, 2) are contained in SB. If the condition does not hold, then
there exists a connected component C such that there is a universally quantified
variable y in C ′. Let v be the variable in C but not in C′, and let us call {0, 1}
and {2} the blocks of B. The universal player can then guarantee that y is set
to a value that is in a different block from the value given to v. This suffices to
spoil φ, since to satisfy φ it must be that all variables in C are set to values in
the same block. �
From the perspective of this example, the approach of giving a reduction from
QCSP(B) to CSP(B∗) is not as fine a tool as one would like for understanding
the complexity of QCSP(B): while this approach gives an NP upper bound on
QCSP(B), the problem CSP(B∗) does not always yield the more detailed infor-
mation of whether or not QCSP(B) is in P. Broadly speaking, the development
of tools for understanding the QCSP on general structures (by which is meant
structures not necessarily having constants) would be very welcome.
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Abstract. Robotics researchers will be aware of Dexter Kozen’s contri-
butions to algebraic algorithms, which have enabled the widespread use
of the theory of real closed fields and polynomial arithmetic for motion
planning. However, Dexter has also made several important contribu-
tions to the theory of information invariants, and produced some of the
most profound results in this field. These are first embodied in his 1978
paper On the Power of the Compass, with Manuel Blum. This work has
had a wide impact in robotics and nanoscience.

Starting with Dexter’s insights, robotics researchers have explored
the problem of determining the information requirements to perform
robot tasks, using the concept of information invariants. This represents
an attempt to characterize a family of complicated and subtle issues
concerned with measuring robot task complexity.

In this vein, several measures have been proposed [14] to measure the
information complexity of a task: (a) How much internal state should
the robot retain? (b) How many cooperating robots are required, and
how much communication between them is necessary? (c) How can the
robot change (side-effect) the environment in order to record state or
sensory information to perform a task? (d) How much information is
provided by sensors? and (e) How much computation is required by the
robot? We have considered how one might develop a kind of “calculus”
on (a) – (e) in order to compare the power of sensor systems analytically.
To this end, information invariants is a theory whereby one sensor can
be “reduced” to another (much in the spirit of computation-theoretic
reductions), by adding, deleting, and reallocating (a) – (e) among col-
laborating autonomous robots. As we show below, this work steers using
Dexter’s compass.

1 The Power of the Compass

In 1978, Blum and Kozen wrote a ground-breaking paper on maze-searching
automata [2,38]. This chapter is devoted to a discussion of their results, On
The Power of the Compass [2], and we interpret their results in the context of
autonomous mobile robots and information invariants.

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 50–65, 2012.
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1.1 Notation

In this chapter, I use (a), (b), (c), . . . to denote Resources, such as internal state,
number of robots, external state, and so forth (see Abstract for a complete
list). The numbers (1), (2), (3) denote a list of key results from Dexter’s pa-
per [2], which are introduced in Section 1.2. Starred roman numerals I∗, II∗,
III∗, . . . denote techniques in information invariants theory (such as Reduction,
Transformation, Universal Reduction, etc.); these are described in Section 3.3.
Small roman numerals (i), (ii) denote resources for information invariants in
massively-parallel distributed manipulation and nanoscience (Section 3.2).

1.2 The Scales Fall from My Eyes

From 1987-1997, I taught at Cornell, just down the hall from Dexter. My health
was excellent. Every morning I drank Pepsi before teaching large undergraduate
programming lectures. Each afternoon I drank espresso and wrote papers, while
watching the sun set over Lake Cayuga from my office (which was the largest lair,
with the best view, in Upson Hall). In the evenings I would eat dinner with Dan
Huttenlocher or Ramin Zabih, and at night I played in Dexter’s band,The Steamin’
Weenies. I tended a large flock of enthusiastic graduate students and post-docs
working on robotics. In 1990, my student Jim Jennings and I posed the following:

Question 1. [35] “Let us consider a rational reconstruction of mobile robot pro-
gramming. There is a task we wish the mobile robot to perform, and the task is
specified in terms of external (e.g., human-specified) perceptual categories. For
example, these terms might be “concepts” like wall, door, hallway, or Professor
Hopcroft. The task may be specified in these terms by imagining the robot has
virtual sensors which can recognize these objects (e.g., a wall sensor) and their
“parameters” (e.g., length, orientation, etc.). Now, of course the physical robot
is not equipped with such sensors, but instead is armed with certain concrete
physical sensors, plus the power to retain history and to compute. The task-level
programming problem lies in implementing the virtual sensors in terms of the
concrete robot capabilities. We imagine this implementation as a tree of compu-
tation, in which the vertices are control and sensing actions, computation, and
state retention. A particular kind of state consists of geometric constructions;
in short, we imagine the mobile robot as an automaton, connected to physical
sensors and actuators, which can move and interrogate the world through its sen-
sors while taking notes by making geometric constructions on “scratch paper.”
But what should these constructions be? What program runs on the robot? How
may these computation trees be synthesized?”

Let us consider this question of state. Suppose the robot is given a particular
task. To accomplish this task, what should the robot record on its scratch pa-
per? What is necessary and sufficient? In robotics, necessity has rarely been
addressed. Sufficiency has been addressed but the bounds are extremely loose.
Specifically: in robotics, the answer for sufficiency is frequently either “nothing”
(i.e., the robot is reactive, and should not build any representations), or “a map”
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(namely, the robot should build a geometric model of the entire environment).
In particular, even schemes such as [41] require a worst-case linear amount of
storage (in the geometric complexity n of the environment). Can one do better?
Is there a sufficient representation that is between 0 and O(n)?

This seemed like a great question to work on. Dexter’s office was three doors
down down the hall (hear that, robot?), so we kicked it around. Dexter mentioned
he had “some results” on this problem, and gave me a copy of his 1978 paper.

“Some results” turned out to be a considerable understatement. His paper
laid out the foundations for the field, posing and solving its first and most
fundamental problems. As I read his paper, my excitement grew with each page.
Blum and Kozen provided precise answers to these questions in the setting of
theoretical, situated automata. The results provide substantial insight into the
Question 1 above. His paper had a profound impact on my work [14].

This chapter didactically adopts the rhetorical “we” to compactly interpret
Dexter’s results. We define a maze to be a finite, two-dimensional obstructed
checkerboard. A finite automaton (DFA) in the maze may, in addition to its
automaton transitions, transit on each move to an adjacent unobstructed square
in the N, S, E, or W direction. We say an automaton can search a maze if
eventually it will visit each square. It need not halt, and it may revisit squares.
Hence, this kind of “searching” is the theoretical analog of the “exploration”
task that many modern mobile robots are programmed to perform. However,
note that in this entire section there is no control or sensing uncertainty.

We can consider augmenting an automaton with a single counter; using this
counter it can record state. Two counters would not be an interesting enhance-
ment, because then we obtain the power of a Turing machine.1 The distinction
is that a DFA with two counters is as powerful as a Turing machine (which can
make a linear-sized map) so in some sense this augmentation of a DFA is näıve,
or trivial. We wish to address the the question of whether or not there exists
a DFA space augmentation that lies in between ‘nothing’ and a ‘full Turing
machine.’ In this manner we can explore whether or not tasks can be accom-
plished without making a linear-sized map. The question can be nicely explored
by asking: what is the power of giving the DFA a single counter?

We say two (or more) automata search a maze together as follows. The au-
tomata move synchronously, in lock-step, but at each step the DFAs can perform

1 A counter is like a register. A DFA with a counter can keep a count in the register,
increment or decrement it, and test for zero. A single counter DFA (introduced by
[30] in 1966) can be viewed as a special kind of push-down (stack) automaton (PDA)
that has only one stack symbol (except for a top of the stack marker). This means
we should not expect a single-counter machine to be more powerful than a PDA,
which, in turn, is considerably weaker than a Turing machine (see, eg., [33, Ch. 5]).
The proof that a two-counter DFA can simulate a Turing machine was first given
by Papert and McNaughton in 1961 [43] but shorter proofs are now given in many
textbooks, for example, see [33, Thm. 7.9]. However, our distinction of one counter
vs. two counters is motivated by theory, and is mathematical rather than practical.
In practice, one would not equip a robot with two counters to simulate a Turing
machine, because the simulation is not efficient.
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different internal state transitions and step in different directions on the maze.
This synchronization could be effected using global control, or with synchronized
clocks. When two automata land on the same square, each transmits its internal
state to the other.

Finally, we may externalize and distribute the state. Instead of a counter,
we may consider equipping an automaton with pebbles, which it can drop and
pick up. Each pebble is uniquely identifiable to any automaton in the maze. On
moving to a square, an automaton senses what pebbles are on the square, plus
what pebbles it is carrying. It may then drop or pick up any pebbles.

Hence, a pure automaton is a theoretical model of a “reactive,” robot-like
creature. (Many simple physical robot controllers are based on DFA’s). The
exchange of state between two automata models local communication between
autonomous robots. The pebbles model the “beacons” often used by mobile
robots, or, more generally, the ability to side-effect the environment (as opposed
to the robot’s internal state) in order to perform tasks. Finally, the single counter
models a limited form of internal state (storage). It is much more restrictive than
the tape of a Turing machine. Quantifying communication between collaborating
mobile robots is a fundamental information-theoretic question. In manipulation,
the ability to structure the environment through the actions of the robot (see,
eg, [13,14,23,48]) or the mechanics of the task (see, eg,. [42]) is a fundamental
paradigm. How do these techniques compare in power?

We call automata with these extra pebbles or counters enhanced, and we
will assume that automata are not enhanced unless noted. All automata are
deterministic, and there is no randomization unless explicitly noted. Given these
assumptions, Blum and Kozen demonstrate the following results. First, they
note a result of Budach that a single automaton cannot search all mazes.2 Next
they prove the following:

1. There are two (unenhanced) automata that together can search all mazes.
2. There is a two-pebble automaton that can search all mazes.
3. There is a one-counter automaton that can search all mazes.

We will show below that these results are crisp information invariants. It is clear
that a Turing machine could build (a perfect) map of the maze, that would be
linear in the size of the maze. This they term the näıve linear-space algorithm.
This is the theoretical analog of most map-building mobile robots—even those
that build “topological” maps still build a linear-space geometric data structure
on their “scratch paper.” But (3) implies that there is a log-space algorithm
to search mazes—that is, using only an amount of storage that is logarithmic
in the complexity of the world, the maze can be searched. Why? Here is the
idea: First, [2] show how to write a program whereby an unenhanced DFA can
traverse the boundary of any single connected component of obstacle squares.
Now, suppose the DFA could “remember” the southwesternmost corner (in a
lexicographic order) of the obstacle. Next, [2] show how all the free space can
then be systematicically searched. It suffices for a DFA with a single counter
to record the y-coordinate ymin of this corner. We now imagine simulating this

2 See [2] for references.
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algorithm (as efficiently as possible) using a Turing machine, and we measure
the bit-complexity. If there are n free squares in the environment then ymin ≤ n,
and the algorithm consumes O(log n) bits of storage. For details, see [2]. This is
a precise answer to part of our Question 1.

However, the results (1-3) also demonstrate interesting information invariants.
(1) = (2) demonstrates the equivalence (in the sense of information) of beacons
and communication. Hence, side-effecting the environment is equivalent to col-
laborating with an autonomous co-robot. In other words, the augmentations to
the DFA of (1) and (2) are equivalent in power, in that either (1) or (2) allows
the robot to accomplish the maze-searching task. The equivalence of (1) = (2)
= (3) suggests an equivalence (in this case) and a tradeoff (in general) between
communication, state, and side-effecting the environment. We credit [2] with
these founding examples of information invariants.

1.3 The Power of Randomization

Michael Erdmann’s Ph.D. thesis was an investigation of the power of random-
ization in robotic strategies [26]. The idea is similar to that of randomized
algorithms—by permitting the robot to randomly perturb initial conditions (the
environment), its own internal state, or to randomly choose among actions, one
may enhance the performance and capabilities of robots, and derive probabilistic
bounds on expected performance.3 This lesson should not be lost in the context
of the information invariants above. For example, as Erdmann points out, one
finite automaton can search any maze if we permit it to randomly select among
the unobstructed directions. The probability that such an automaton will even-
tually visit any particular maze square is 1. Randomization also helps in finite
3D mazes (see Section 1.4 for more on the problems that deterministic (as op-
posed to randomized) finite automata have in searching 3D mazes), although
the expected time for the search increases some.

These observations about randomizing automata can be even extended to
unbounded mazes (the mazes we have considered so far in this chapter are finite).
However, in a 2D unbounded maze, although the automaton will eventually
visit any particular maze square with probability 1, the expected time to visit
it is infinite. In 3D, however, things are worse: in 3D unbounded mazes, the
probability that any given “cube” will be visited drops from 1 to about 0.37.

1.4 What Does a Compass Give You?

Thus we have given precise examples of information invariants for tasks (or for
one task, namely, searching, or “exploration.”) However, it may be less clear
what the information invariants for a sensor would be. Again, Blum and Kozen
provide a fundamental insight. We motivate their result with the following

3 While the power of randomization has long been known in the context of algorithms
for maze exploration, Erdmann was able to lift these results to the robotics domain.
In particular, one challenge was to consider continuous state spaces (as opposed to
graphs).
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Question 2. Suppose we have two mobile robots, named Tommy and Lily, con-
figured as described in [14]. Suppose we put a flux-gate magnetic compass on
Lily (but not on Tommy). How much more “powerful” has Lily become? What
tasks can Lily now perform that Tommy cannot?

Now, any robot engineer knows compasses are useful. But what we want in
answer to Question 2 is a precise, provable answer. Happily, in the case where
the compass is relatively accurate,4 [2] provide the fundamental insight:

Consider an automaton (of any kind) in a maze. Such an automaton effectively
has a compass, since it can tell directions N,S,E,W apart. That is, on landing on a
square, it can interrogate the neighboring N,S,E,W squares to find out which are
unobstructed, and it can then accurately move one square in any unobstructed
compass direction.

By contrast, consider an automaton in a graph (that need not be a maze). Such
an automaton has no compass; on landing on a vertex, there are some number
g ≥ 0 of unordered edges leading to “free” other vertices, and the automaton
must choose one.

Hence, as Blum and Kozen point out, “Mazes and regular planar graphs appear
similar on the surface, but in fact differ substantially. The primary difference is
that an automaton in a maze has a compass: it can distinguish N,S,E,W. A
compass can provide the automaton with valuable information, as shown by the
second of our results” [2]. Now, assume all automata are deterministic, and no
randomization is permitted. Recall result (1) in Section 1.2: (1) There are two
(unenhanced) automata that together can search all mazes. Blum and Kozen
show, that in contrast to (1), no two automata together can search all finite
planar cubic graphs (in a cubic graph, all vertices have degree g = 3). They then
prove no three automata suffice. Later, Kozen showed that four automata do
not suffice [38]. Moreover, if we relax the planarity assumption but restrict our
cubic graphs to be 3D mazes, it is known that no finite set of finite automata
can search all such finite 3D mazes [3]!

Hence, [2,38] provide a lower bound to the question, “What information does
a compass provide?” We close by mentioning that in the flavor of Section 1.3,
there is a large literature on randomized search algorithms for graphs. As in
Section 1.3, randomization can improve the capability and performance of the
search automata.

2 Measuring Information Invariants

Blum and Kozen gave us the basic tools and concepts behind information in-
variants. We illustrated by example how such invariants can be analyzed and
derived. We made a conceptual connection between information invariants and
trade-offs. Tradeoffs also arise naturally in kinodynamic settings [24], in which

4 In considering how an accurate sensor can aid a robot in accomplishing a task, Dex-
ter’s methodology anticipates, as it were, Erdmann’s work on developing “minimal”
sensors [27].
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performance measures, planning complexity, and robustness (in the sense of resis-
tance to control uncertainty) are traded-off [24,21,22]. We noted that Erdmann’s
invariants are of this ilk [26]. More generally, in optimization problems (shortest
path, fastest path, etc.) it is natural to define trade-offs using these performance
measures (e.g., path-length, -time, or -cost) as a kind of common currency. In-
deed, such trade-offs form the basis of online algorithms and polynomial-time
approximation schemes.

However, without a performance (cost) measure, it is substantially more dif-
ficult to develop information invariants. This is where the beauty of Dexter’s
approach is evident. Measures of information complexity are fundamentally dif-
ferent from performance measures. Our interest in this chapter lies in the former
(for more on performance measures see [14], and [24]).

Here are some measures of the information complexity of a robotic task: (a)
How much internal state should the robot retain? (b) How many cooperating
robots are required, and how much communication between them is necessary?
and (c) How can the robot change (side-effect) the environment in order to record
state or sensory information to perform a task? Examples of these categories
include: (a) space considerations for computer memory, (b) local line of sight
communication such as infra-red (IR) communication between collaborating au-
tonomous mobile robots, and (c) dropable beacons. With regard to (a), we note
that, of course, memory chips are cheap, but in the mobile robot design space,
most investigations seem to fall at the ends of the design spectrum. For example,
(near) reactive systems use (almost) no state, while “map builders” and model-
based approaches use a very large (linear) amount. Natarajan [44] considered
an invariant complexity measure analogous to (b), namely the number of robot
“hands” required to perform an assembly task. This quantifies the interference
kinematics of the assembly task, and assumes global synchronous control. With
regard to (c), one easily-imagined physical realization consists of coded IR bea-
cons; however, “external” side-effects could be as exotic as chalking notes on the
environment (as parking police do on tires), or assembling a collection of ob-
jects into a configuration of lower “entropy” (and hence, greater information).
Calibration is an important form of external state (or, more generally a way to
synchronize internal state, robot configuration, and external state), which we
explore in [14].

Dexter proved automata-theoretic results to explore invariants that trade-off
internal state, communication, and external state. His work first concentrates
on information invariants for tasks. It then shows how information invariants
for sensors can be integrated into the discussion. In particular, Dexter gave a
precise way to measure the information that a compass gives an autonomous
mobile robot. Remarkably, trading off the measures (a)-(c) proved sufficient to
quantify the information a compass supplies!

The compass invariant illustrates the kind of result that we wish to prove
for more general sensors. Thus, we add a measure to quantify the informa-
tion provided by sensors. To push this framework further, we had to intro-
duce additional machinery to include two additional important measures of the
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information complexity of a robotic task: (d) How much information is provided
by sensors?, and (e) How much computation is required of the robot? In [14],
we described how one might develop a kind of “calculus” on measures (a) – (e)
in order to compare the power of sensor systems analytically. To this end, we
developed a theory whereby one sensori-computational system can be “reduced”
to another (much in the spirit of computation-theoretic reductions), by adding,
deleting, and reallocating (a) – (e) among collaborating autonomous robots.

3 Impact on Robotics and Nanoscience

Dexter’s ideas and their offspring in the information invariants literature [14]
have had a wide impact on robotics in general and microrobotics in particular. I
give three examples. Videos of these implemented robotic systems can be found
online at: [15,16].

3.1 Microscale Assembly

[20] describe top-down microassembly using groups of non-holonomic, highly
under-actuated micro-robots. A detailed description of an individual robot can
be found in [19]. Such an assembly would be rather easy at the macroscopic scale
but the individual robots are about 200 by 60 microns in size, making control
and assembly challenging. These robots demonstrate information invariant trade-
offs in terms of control and design. The control is encoded in the power-delivery
signal, which must be demultiplexed by the robots. All the robots receive the
same global power delivery and control signal but respond differently not only
because of their different internal states, but also due to engineered differences
in their physics.

Since even a single robot [19] is under-actuated and non-holonomic, informa-
tion invariants-based design was necessary to prove global controllability. The
robots in the papers and videos [20] exhibit an unprecedented degree of indi-
vidual control, for things that are so tiny. The robots are intentionally simple
in design to minimize their individual size, and groups of such microrobots are
highly underactuated when directed using a broadcast control signal. The con-
trol algorithms reconfigure this highly underactuated n-microrobot system using
a non-holonomic control scheme. This was the first example of parallel (simulta-
neous) operation and cooperation of multiple untethered microelectromechanical
system (MEMS) microrobots.

3.2 Provable Constraints on Architecture and Dynamics for
Massively Parallel, Distributed Manipulation

Background. We now discuss an interesting application, also in microassem-
bly. Part manipulation is an important but also time-consuming operation in
microscale automation. Micro-parts need to be sorted and oriented before as-
sembly. It is a difficult problem to manipulate, orient, singulate, and assemble
such parts at the microscale.
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One possibility is to use a massively parallel array of distributed microactu-
ators in order to perform distributed manipulation [5,9,6,10,11,49,4]. The mi-
croactuators are controlled using programmable force fields. The basic idea is
the following: the field is realized on a planar surface on which the part is placed.
The forces exerted on the contact surface of the part translate and rotate the
part to an equilibrium configuration. The manipulation requires no sensing.
Current technology permits the implementation of certain force fields in the
microscale with ‘ciliary’ actuator arrays built in MEMS technology, and in the
macroscale with transversely vibrating plates. The flexibility and dexterity that
programmable force fields offer has led researchers to investigate the extent to
which these fields can be useful. Some work [5,9,6,10,11,49,4,7] analyzes the prop-
erties of force fields that are suitable for sensorless manipulation and proposes
novel manipulation strategies. These strategies typically consist of temporally
discrete sequences of force fields that cascade the parts through multiple equi-
libria until a desired goal state is reached.

For example, one may develop a sequence of steps (a sequence of vector fields)
to orient a polygonal part. Programmable force fields allow us to shift the com-
plexity of parts-feeding from the design of mechanical tracks, filters, and cutouts,
to control algorithms and circuitry. No sensors or feeder redesign is required.
However, the first designs required control software, a clock, and, to some ex-
tent, synchronization between distributed actuators. In three papers [7,9,5], we
addressed the information invariants trade-offs in such devices, specifically the
trade-off between (i) having a clock and communication for sequencing, versus
(ii) using a more complex vector field that obviates the necessity of a clock for
synchronization and sequencing [7]. Finally, we showed that, surprisingly, one
of the more complex components of the vector field can be implemented by a
coupling with the world (gravity) in combination with a relatively simple MEMS
array [9,49,5].

Significance and Generalizability. We now discuss the relevance to a gen-
eral methodology of information invariants for control and manipulation in a
distributed setting. Suppose we take the view of an architect seeking to simplify
a massively-parallel distributed system, namely our microscale parts feeder. For
discussion, we will adapt a perspective that has been profitable in distributed
systems, and try to remove the clock from the distributed system (this sys-
tem comprises the massively parallel microfabricated actuator array, together
with its control, communication, and computation). Specifically: typical MEMS
arrays for programmable force fields require control lines for programmability,
plus a clock to switch between control strategies. In addition, control hardware
and software are required, for example in computer(s) connected to the actua-
tor array. Let us ask the ‘minimalist’ question: In what ways can the system be
simplified?

One direction to explore is the following: can the clock be removed? Some-
what remarkably, this question proves to be equivalent to the conjecture: Does
there exist a single vector field U in which every part P has exactly one stable
equilibrium x

P (up to part symmetry)? The reason for equivalence is: unless such
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a unique equilibrium exists, then a clock will be needed to cascade and collapse
the multiple equilibria by switching after some time to a subsequent vector field
strategy.

Specifically: If such a ‘universal’ field exists, part orientation can be effected
without sensing and without a clock, achieving a minimal solution in terms of
resources. It is surprising that a purely architectural question can reduce to
a proving a conjecture about geometric dynamics. Details of the proof can be
found in [7]. It also illustrates the interplay of continuous methods to prove
bounds from, and on, discrete architectural constraints. This example illustrates
information invariants between clock synchronization and vector field complex-
ity. While much work has been done in the complexity of various branches of
computational mathematics (algebra, geometry, topology), the complexity of
vector fields on manifolds has only recently been considered. Now that these
vector fields are a programming paradigm for massively-parallel distributed ma-
nipulation, systematic theoretical investigations have born fruit, to prove these
counterintuitive and powerful results [5,9,6,10,11,4,7].

Dexter’s results on information invariants for multiple cooperating DFAs not
only inspired a generation of researchers to work on parallel and distributed
robotics, but also showed them how robotics can be approached as a science, with
provable resource trade-offs driving a rigorous analysis of complexity, sound-
ness, and completeness. When his approach was understood by roboticists in
the 1990s, they were working with (at most) small handfuls of laboriously hand-
crafted mobile robots (4, 5, or possibly 10). Since simulations were doomed to
success, Dexter’s work motivated robotics researchers to find a domain where
questions of parallel and distributed robotics could be explored experimentally
for tens of thousands, if not millions of cooperating actuators. MEMS provided
an ideal testbed for such theories, since bulk fabrication allows the construction
of huge numbers of microactuators (in the same way that IC circuits are fabri-
cated using VLSI). However, the pioneers who moved from robotics to MEMS
were explicitly trying to generalize Dexter’s results and obtain crisp theoretical
information invariants that could be experimentally validated. In some sense,
the migration from robotics to nanoscience was a multi-university physics ex-
periment, designed to determine how Dexter’s laws of parallel robotics would
scale and generalize to massively-parallel distributed manipulation. The fruit of
this research is the theory of programmable vector fields, which we have reviewed
briefly in this chapter.

The theory of programmable vector fields for micro- and nano-scale manipu-
lation has yielded numerous interesting theoretical results and predictions, that
have been confirmed by extensive experimental validation [5,9,6,10,11,49,4,7].
The theory grew out of information invariants analysis, and represents a pow-
erful technique for massively-parallel distributed manipulation. The degree of
parallelism and distribution in these manipulation tasks is much higher than in
other branches of robotics: tens of thousands of microactuators can easily be
controlled and coordinated, in sophisticated manipulation tasks, and there is
no reason it shouldn’t work for millions or billions. There are many theories of
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multi-robot and multi-actuator control. There are also theories of manipulation,
and sometimes even theories for parallel and distributed manipulation. Typically,
even the best of these theories break down as the number of actuators increases.
But the algorithmic theory of programmable vector fields for massively-parallel
distributed manipulation is the only technique for multi-robot control that be-
comes more robust and more accurate as the actuators become more numerous,
smaller, and denser. And at this point, the algorithms that Dexter’s work in-
spired have been implemented in hardware using silicon, polyimide, and metal,
leveraging a dizzying array of 21st-century surface chemistry and nanofabrication
technologies. This is no small feat.

3.3 Trade-Offs, Robot Complexity, and Information Invariants

Information invariants as a theory have been used generate and analyze inter-
esting experiments in the field of mobile robotics. For example, in the 1990s
this methodology was used in a significant demonstration of a distributed multi-
mobile-robot team to push an object into place [23,48]. These explorations into
information invariants have had impact on the multi-robot research community.
It also led to a careful analysis of the trade-offs in massively-parallel distributed
manipulation using microfabricated actuator arrays, described above in Sec. 3.2.
Perhaps more important, the work on information invariants in the solution to
robot tasks made precise what had previously been only an inchoate notion,
namely: that robots can gain information by action or by sensing or by internal
state, and that the sources of information are to some extent interchangeable.
Of particular power are the method of sensor reductions and the construct of
permutation for reallocating resources [14]. Sensor reductions are analogous to
computation-theoretic reductions in that they allow mobile sensor networks to
be rigorously compared, and induce a hierarchy of complexity over the class
of sensori-computational systems. But because sensor networks are embedded
in Whitney stratifications (i.e., composed of differentiable algebraic manifolds),
many questions about them can, in principle, be decided computationally. Hence,
in contrast to computation-theoretic reductions, the reduction (i.e. complexity)
hierarchy of information invariants on sensory networks is effectively computable.

Four key techniques are made possible in the information invariants frame-
work:

I* Given two sensori-computational systems, we can ask which is more pow-
erful (can one be reduced to the other)?

II* We can also ask, can one sensori-computational system be transformed into
another, and if not, what resources must be added to make it equivalent?

III* Given a collection of “parts” (resources) and a specification of a sensori-
computational system, can the parts be configured to implement that spec-
ification?

IV* Universal reduction: can the components of one sensori-computational sys-
tem always perform the job of a second sensori-computational system?
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It is also remarkable that, again, in principle, all four of these decision prob-
lems have been shown to be effectively computable [14]. One of the difficult
and challenging aspects of theoretical computer science and structural complex-
ity theory is that the reductions that leverage many theorems must be crafted
by humans, since the existence and form of these reductions is not effectively
computable. By this we mean the following. Suppose we have two computation-
theoretic problems. Can one be reduced to the other? There is no algorithm for
deciding this. Instead, a proof must be constructed by a human. The contrast we
wish to make is that in the domain of parallel and distributed robotics, there is
an algorithm to decide whether or not one sensori-computational system can be
reduced to another. Moreover, the algorithm is constructive and the reduction
can be effectively computed.

Hence, distributed and parallel robotics provides a domain with a rich com-
plexity hierarchy, in which, unlike in the general theory of computation, reduc-
tions between sensori-computational systems can be effectively computed. The
ability to compute these reductions comes directly from information invariants,
namely from the embedding of the physical robot systems into real semialgebraic
sets. Apart from its importance to robotics, this means that some difficult ques-
tions of hierarchy, equivalence, hardness, and classification, all of which interest
theoretical computer science, can be explored in a more tractable alternative
domain.

Despite this progress, there is much to be done in developing and applying
the information invariants theory. First, the theory is perhaps most powerful
at quantifying trade-offs between communication and sensing. For example, the
machinery can be used to eliminate explicit communication between robots in
order to allow them to communicate through the task [23,48]. The information
invariants mechanism uses a hierarchy of reductions (that satisfy ‘graded transi-
tivity’) to compare the power of sensori-computational systems and to compute
transformations between them [14]. However, the theory is still not fully elabo-
rated for manipulation tasks and action/motion in general. In its present state,
the information invariants theory can apply to a sensory system which is em-
bedded like a graph, or whose vertices are constrained to lie in sets within a
configuration space. While clearly this represents a kind of dynamics or mo-
tion, the theory does not exploit the motion as encoded in trajectories, and the
mechanics of manipulation is not explicitly represented.

For this reason, [14,5,9,6,23,48,10,11,49,4,7,45,19,20] studied, by specific ex-
amples, a series of challenging distributed manipulation problems that would
foreground the issues of distribution, parallelism, manipulation, and mechanics
(this is embodied in our work on massively-parallel distributed manipulation
using microfabricated actuator arrays, and subsequent other MEMS microrobot
work). In this domain, the scale of the parallelism is large and therefore an
appealing test case. The manipulation tasks must be coordinated and there-
fore provide an interesting coupled configuration space to integrate mechanics,
sensing, control, computation, and communication. Our work, over the past 20
years, has explicitly measured and quantified experimental trade-offs between



62 B.R. Donald

these resources (clock, planning/computation, synchronization, mechanics, sens-
ing, communication) and also in removing or minimizing these resources. This
has resulted in a series of novel devices, based on MEMS, for distributed manip-
ulation surfaces, which represent design points with minimal resource profiles.
A major challenge is the integration of mechanics, planning, manipulation, and
control into the (currently) sensori-computational framework of information in-
variants. In short, information invariants can be seen as a theory of robot com-
plexity when the robots are essentially mobile sensor networks. This results in
a series of challenging and thought-provoking results, namely trade-offs in re-
sources, and the ability to engineer systems that accomplish sophisticated tasks
with surprisingly low resource-complexity in their design. A specific example,
where we removed explicit communication and, instead, harness the ability of
(multiple) robots to communicate through the task, is discussed in [23,48], for
one application (moving large objects such as furniture). A key issue was remov-
ing synchronization to obtain an asynchronous distributed protocol (analogous
to transformation (II∗), above). The intellectual roots of this work spring from
Dexter’s 1978 paper, where he showed the equivalence of communication, inter-
nal state, and external state for maze-searching automata.

Acknowledgments. I would like to thank referees for their helpful suggestions
on this article.
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1 Introduction

Equirecursive types consider a recursive type to be equal to its unrolling and have
no explicit term-level coercions to change a term’s type from the former to the
latter or vice versa. This equality makes deciding type equality and subtyping
more difficult than the other approach—isorecursive types , in which the types
are not equal, but isomorphic, witnessed by explicit term-level coercions. Pre-
vious work has built intuition, rules, and polynomial-time decision procedures
for equirecursive types for first-order type systems. Some work has been done
for type systems with parametric polymorphism, but that work is incomplete
(see below). This chapter will give an intuitive theory of equirecursive types for
second-order type systems, sound and complete rules, and a decision procedure
for subtyping.

Another interesting feature of type systems turns out to be quite related to
equirecursive types. Canning et al. [CCH+89] introduced the idea of F-bounded
polymorphism. In this form of polymorphism a type bound can mention the
type being bounded. For example, it can require a type that has a method
that returns an object of the type being bounded. This form of bound is useful
for binary methods and in typing object encodings [Gle00]. Treating a type
variable as being a subtype of its bound when that bound can refer to it is
like treating a recursive type as being equal to its unrolling, and similar issues
arise to formalising such type systems. This chapter will also treat F-bounded
parameteric polymorphism, and give it an intuitive formalisation, sound and
complete set of rules, and decision procedure for subtyping.

Amadio and Cardelli [AC93] were the first to investigate the equirecursive
approach. They proposed the tree interpretation of recursive types, which is
based on the idea of repeatedly unrolling recursive types into possibly-infinite
trees. Two types are equal if their corresponding trees are the same; similarly,
subtyping can be defined on trees and lifted to types. Amadio and Cardelli made
these ideas precise, defined a set of rules for type equality and subtyping that
are sound and complete, and provided an exponential-time decision procedure
for equality and subtyping. Kozen et al. [KPS95] reduced this exponential time
to quadratic time, by defining a notion of tree automata that generate trees just
as types do and a construction from two tree automata that decides equality
and subtyping. Both Amadio and Cardelli and Kozen et al. worked with first-
order type systems. Colazzo and Ghelli [CG99] investigated a second-order type
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system with equirecursion. They gave a coinductive set of rules for subtyping and
a decision procedure, but did not relate their rules to trees nor show soundness
and completeness to any intuitive model. In previous work [Gle02a, Gle02b], I
gave a tree model for second-order systems, a set of rules for equality of types,
showed soundness and completeness of those rules, defined automata for the
trees, and defined a construction on automata that gives a decision procedure
for equality.1 However, I did not address subtyping. Gauthier and Pottier [GP04]
devised an O(n logn) algorithm to decide equality of second-order types with
equirecursive types by reducing second-order types to canonical first-order types
in a particular way such that the canonical types are equal exactly when the
original types are equal; their approach also handles entailment of type equations
and type unification problems with the same complexity.

This chapter investigates a second-order type system with F-bounded quan-
tifiers and equirecursive types. First, it defines a notion of trees that provide an
intuitive model for such types and defines an intuitive notion of subtyping on
these trees. Next, it presents the types themselves and defines how these map
to trees. Then it presents a set of type equality and subtyping rules and shows
soundness and completeness of these rules with respect to the tree interpreta-
tion. Finally, it defines a notion of tree automata, how these generate trees, and
a construction that decides subtyping in polynomial time.

Complete definitions and proofs of all the results in this chapter appear in a
companion technical report [Gle12].

2 Binding Trees

I consider a system with top, bottom, function, and F-bounded forall quantified
types. To model such types, I use possibly-infinite trees over these constructs
and de Bruijn indices to model type variables. These trees are formulated in the
standard way:

Tree = {t : {L,R}∗ ⇀ N ∪ {�,⊥,→, ∀} |
ε ∈ dom(t) ∧ (p� ∈ dom(t)⇔ t(p) ∈ {→, ∀})}

Forall quantifiers are F-bounded, that means that ∀ binds a variable in each of
its subtrees—in the left subtree, the bound, to refer to the type being bounded
and in the right tree to refer to the quantified type.

Trees form a complete 1-bounded ultrametic space in the usual way. Some
sample trees appear in Figure 1, and I overload the notation and use var(n), �,
⊥, tL→tR, and ∀tL.tR to denote appropriate trees. The subtree of t along path p
is subtree(t, p), the number of variables bound along the path from p1 to p2 (a
suffix) is bind(t, p1 → p2), and shifting the free variables of a tree t up by n is
shift(t, n); their definitions are straightforward.

1 In those papers I claimed that the algorithm could be made quadratic time. I have
recently realised that the reasoning was incorrect, and thus that my papers demon-
strated only an exponential-time algorithm. The arguments I give latter can be used
to make an O(n4) algorithm from the ones in my previous work.
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Fig. 1. Examples trees t1, on left, and t2, on right

2.1 Regular Trees

Not all trees are generated by syntactic types. For first-order systems, regular
trees—those with a finite number of subtrees—correspond exactly to the trees
that can be generated. For the trees defined above, this is no longer the case.
Consider tree t1 in Figure 1 that is generated by ∀α.rec β.α → ∀β′.α—all the
de Bruijn indices intuitively represent the same thing, the variable bound by the
∀ at the top of the tree, but the actual numbers are all different. Now consider
tree t2 in Figure 1. It has only a finite number of subtrees, but in fact no type
can generate it. It looks like the second and subsequent forall trees repeat each
other, however the de Bruijn indices 1 in that tree refer to the quantifier in the
previous iteration of the cycle rather than the current iteration, and types cannot
generate such a structure. My previous work defined a rather complicated notion
of regular binding trees. Since then I have discovered a better, more intuitive
formulation.

The idea is that relevant subtrees are equal modulo appropriate changes to
the de Bruijn indices. For example, in the tree for rec α.∀β ≤ �.α, the tree itself
is not equal to the right subtree, but the tree itself shifted by one is equal to the
right subtree—one being the number of variables bound from the root to the
right subtree. Taking the symmetric, transitive, and suffix closure of this idea
provides a suitable notion of when two subtrees of a tree should be considered
equivalent. Then a tree is regular if there are only a finite number of equivalent
subtrees.

This idea can be formalised by defining an equivalence relation on the paths
of a tree t, eqst(t), that intuitively says which subtrees of t are equal. First, a
tree being equivalent to one of its subtrees is formalised as:

eqst t(p1 → p2) = ∧ p2 ∈ dom(t)
∧ shift(subtree(t, p1), bind(t, p1 → p2)) = subtree(t, p2)
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Then the equivalence of paths of a tree is defined as:

eqst t(R) = ∪{(p1, p2) | (p2, p1) ∈ R}
∪{(p1, p3) | (p1, p2) ∈ R ∧ (p2, p3) ∈ R}
∪{(p1p, p2p) | (p1, p2) ∈ R ∧ p1p ∈ dom(t) ∧ p2p ∈ dom(t)}
∪{(p1, p1p2) | eqstt(p1 → p1p2)}

eqst(t) = ∩eqstt(R)⊆RR

It is easy to prove that eqst(t) is an equivalence relation on dom(t). A tree t is
a regular binding tree exactly when [eqst(t)] is finite.

Each equivalence classes of eqst(t) has a particular type constructor, as defined
by the function:

NL(t, [p]eqst(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fv(n) t(p) = n+ bind(t, ε→ p)
bv([p′]eqst(t), �) p′� ≤ p ∧ t(p′1) = ∀ ∧ t(p) = bind(t, p′�→ p)
� t(p) = �
⊥ t(p) = ⊥
→ t(p) =→
∀ t(p) = ∀

It is easy to prove that this function is well defined and that [p]eqst(t)� = [p�]eqst(t)
when NL(t, [p]eqst(t)) ∈ {→, ∀} is also well defined.

2.2 Subtyping

Intuitively, subtyping of trees should be as follows. Top should be a supertype
of everything, bottom should be a subtype of everything, a variable should be a
subtype of itself and its bound, a function tree is a subtype of another function
tree when the argument trees are related contravariantly and the result trees
are related covariantly, and similarly for forall trees. This could be made into a
formal definition by using coinduction except for a couple of points. First, if the
coinductive definition includes the condition that a variable is a subtype of any
tree its bound is a subtype of then problems result. In particular, if free variable
0 is bounded by itself then under this definition free variable 0 is a subtype of any
tree because of the coinduction—what we really want is induction for bounds.
Second, comparing ∀t1L.t1R to ∀t2L.t2R requires selecting a bound for the variable
bound by the ∀s to do the comparison of t1L against t2L and t1R against t2R. The
most general rule that is sound uses the tightest bound for the variable—this is
t2L. However, that rule leads to an undecidable subtyping relation [Pie94]. The
system considered here is actually a non-conversative extension,2 but I believe
that the undecidability still holds (but have not proven this yet). Therefore, to
regain decidability, I will use the Kernel rule for forall—the bound is required
to be invariant (t1L = t2L) and then the bound to use is the equal bound.

2 The system considered by Pierce does not include recursive types of either flavour,
but the rules in this paper could be used to define a more permissive subtyping
relation that is still sound for Pierce’s system—in essence certain subtyping that has
an infinite derivation in Pierce’s rules would be allowed rather than rejected.
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To formalise the above intuition, there are several pieces to build up, as mix-
ing induction and coinduction is a little tricky. A bound set, ranged over by
metavariable β, is a function from de Bruijn indices to trees, BSet = N→ Tree.
Shifting the free variables up and adding a bound t for the new free variable 0
is shift(β, t), and is straightforward to define. Tree promotion, a relation ↪→ on
Tree ×BSet ×Tree, is defined as var(n) ↪→β β(n) (no other trees are related by
↪→β). The base subtyping proposition bst(t1, R, β, t2) holds exactly when either:

– t1 = var(n) and t2 = var(n),
– t2 = �,
– t1 = ⊥,
– t1(ε) =→, t2(ε) =→, subtree(t2, L) Rβ subtree(t1, L), and subtree(t1,R) Rβ

subtree(t2,R), or
– t1(ε) = ∀, t2(ε) = ∀, subtree(t1, L) = subtree(t2, L), and:

subtree(t1,R) Rshift(β,subtree(t2,L)) subtree(t2,R)

A three place relation R on Tree × BSet × Tree is a partial subtyping exactly
when t1 Rβ t2 implies that there exists t′1 such that t1 ↪→∗

β t
′
1 and bst(t′1, R, β, t2).

Subtyping for trees, ≤, is the union of all partial subtypings.
Subtyping satisfies several important properties justifying that the formal

definitions do capture the right intuition.

Theorem 1. Subtyping is a partial subtyping; ≤β is a preorder on Tree for any
β ∈ BSet; t1 ≤β t2 if and only if one of the following holds:

– t1 = var(n) and t2 = var(n),
– t1 = var(n) and β(n) ≤β t2,
– t2 = �,
– t1 = ⊥,
– t1 = t11→t12, t2 = t21→t22, t21 ≤β t11, and t12 ≤β t22, or
– t1 = ∀t3.t4, t2 = ∀t3.t5, and t4 ≤shift(β,t3) t5.

2.3 Characterising Subtyping

A (tree) subtyping problem is a triple (tL, β, tR) where tL ≤β tR might or might
not hold. The definition of subtyping says that after promoting the subtype to
its bound some finite number of times the two trees have to match in a certain
sense. In particular, two trees match when they are the same de Bruijn index,
the supertype is top, the subtype is bottom, both trees are functions, or both
trees are forall quantifiers and their respective left subtrees are equal. With this
definition, subtyping requires that after a finite number of promotions of the
subtype the two trees must match and furthermore, if they match because they
are functions then the respective left subtrees must be contravariantly related
and the respective right subtrees must be covariantly related, and if they match
because they are forall quantifiers then the respective right subtrees must be
covariantly related. For these various subtrees we can repeat this process, finding
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matching trees for them, and so on. Thus for some set of paths we get trees that
match if the original subtyping held.

We can formalise this idea as follows. A subproblem of stp will be a triple
(tL, β, tR) where tL is the current subtype, tR is the current supertype, and β is
the current bound set. For a subtyping problem stp, the initial subproblem for
path ε is simply stp. If the initial subproblem for path p is (tL, β, tR) and there
is a t′L such that tL ↪→∗

β t
′
L and t′L and tR match then the final subproblem for

path p is (t′L, β, tR); otherwise the final subproblem for path p fails. If the final
subproblem for path p is (tL, β, tR) and matches because both trees are func-
tions then the initial subproblem for path pL is (subtree(tR, L), β, subtree(tL, L))
and the initial subproblem for path pR is (subtree(tL,R), β, subtree(tR,R)). Sim-
ilarly, if both trees are forall quantifiers then the initial subproblem for path
pR is (subtree(tL,R), shift(β, subtree(tL, L)), subtree(tR,R)). Thus any subtyping
problem has a prefixed closed set of paths containing ε of initial and final sub-
problems.

The characterisation of subtyping is the following theorem.

Theorem 2. tL ≤β tR if and only if all final subproblems of (tL, β, tR) do not
fail.

We can go further than just these definitions however. Each tree that appears in
a subproblem comes, in some sense, from either of the original trees or one of the
bounds. De Bruijn indices that are bounded by themselves (a trivial bound) are
not interesting, so a tree identifier for a subtyping problem (tL, β, tR) is either
L, R, or n where β(n) �= var(n). A node identifier is a tree identifier and a
sequence of L, R, and Ss specifying to take the left subtree, right subtree, or
shift by one starting from that tree. Any subproblem of stp can be represented
as a triple (niL, nis, niR) where niL is a node identifier representing the subtype,
niR is a node identifiers representing the supertype, and nis is a sequence of
node identifiers representing the bounds of the binding variables that have been
opened up. We can inductively define two partial maps that compute the node
identifier representations of the initial and final subproblems or F for a final
subproblem that fails.

Each node identifier maps to an equivalence class of the equivalence of subtrees
of the tree that it comes from. If there are only finitely many de Bruijn indices
with non-trivial bounds, each of those is a regular binding tree, and the original
subtype and supertype trees are regular binding trees, then the node identifiers
map to a finite set of equivalence classes. So the pair of the current subtype and
supertype node identifiers map to a finite set. Thus for any sufficiently long path
for which there are initial or final subproblems there will be a repeat of this pair.
This property is the key to showing completeness of the subtyping rules, it will
be used to cut off the proof of subtyping to make a finite derivation, as we shall
see.

This characterisation of subtyping is also used to build an algorithm for decid-
ing subtyping. Essentially, the algorithm constructs a deterministic finite-state
automata that searches for paths for which the final subproblem fails. If it fails
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to find such a path, that is, its language is empty, then the subtyping holds. It
uses just the equivalence classes of the node identifiers as well as some informa-
tion about which binder equivalence classes correspond—but this information is
finite too if there are finitely many equivalence classes. The algorithm is able to
do promotion, matching, and determining subtrees with just this information. If
there are a finite number of equivalence classes (as will be the case for regular
binding trees and finite number of non-trivial bounds) then the search space is
finite and the algorithm is a decision procedure.

3 Types

Now I will define the syntactic type system, map it to trees, and then give a
sound and complete set of type equality and subtyping rules.

Let Var be a some set of type variables ranged over by metavariable α. The set
of types, Type, ranged over by metavariables τ and σ is defined by this grammar:

τ ::= α | � | ⊥ | τ1→τ2 | ∀α ≤ τ1.τ2 | rec α.τ
subject to the requirement that in rec α.τ , τ is syntactically contractive in α,
written τ ↓ α. The latter is defined by induction on the structure of τ as follows:

α′ ↓ α ⇐ α �= α′

� ↓ α
⊥ ↓ α
τ1→τ2 ↓ α
∀α′ ≤ τ1.τ2 ↓ α
rec α′.τ ↓ α ⇐ α = α′ ∨ τ ↓ α

3.1 Mapping Types to Regular Binding Trees

Types map to trees given trees for the free variables. An environment, ranged
over by metavariable η, maps type variables to trees, Env = Var → Tree. An
environment is distinguishing if it maps type variables injectively to {var(n) |
n ∈ N} (note this is weaker than my previous work, which required bijectivity).
Shifting the free variables of an environment η up and mapping α to the new
free variable 0 is shift(η, α) and is straightforward to define.

The meaning of a type in an environment is a tree defined by induction on
the type as follows:

treeof (α)η = η(α)
treeof (�)η = �
treeof (⊥)η = ⊥
treeof (τ1→τ2)η = treeof (τ1)η→treeof (τ2)η
treeof (∀α ≤ τ1.τ2)η = ∀treeof (τ1)shift(η,α).treeof (τ2)shift(η,α)
treeof (rec α.τ)η = fix(λt.treeof (τ)η{α�→t})
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where fix(f) is the unique fixed point of a contractive function f on trees (com-
plete ultrametic spaces have unique fixed points for contractive functions)—the
definition here is well defined as it is easy to prove that syntactic contractivity
implies contractivity.

The meaning of a type is a regular binding tree and any regular binding tree
is the meaning of some type.

Theorem 3. If η maps type variables to regular binding trees then treeof (τ)η is
a regular binding tree. If t is a regular binding tree and η can generate t’s free de
Bruijn indices (there exists an α such that η(α) = var(n) for each n such that
t(p) = n+ bind(t, ε→ p)) then there is a type τ such that treeof (τ)η = t.

3.2 Equality and Subtyping Rules

To motivate the subtyping rules, consider some particular problems. First, if α is
bounded by �→α then should α be a subtype of rec α′.�→α′? Intuitively, α is
some set A of functions that take any value to a value in A; similarly rec α′.�→α′

is the set B of all functions that take any value to a value in B; it seems that A
should be a subset of B, so the subtyping should hold. Using de Bruijn index 0
for α then these types map to the trees var(0) and t2 = {(R∗,→), (R∗L,�)} with
bound set β such that β(0) = �→var(0). Let R = {(var(0), β, t2), (�, β,�)}.
Then R is a partial subtyping and so var(0) ≤β t2. If the subtyping rules are to
be complete then clearly they must be able to derive that α bounded by �→α
is a subtype of rec α′.�→α′.

Second, consider an example that does not even involve recursive types. If α
is bounded by (α→�)→⊥ then should α be a subtype of α→�? These types
map to trees var(0) and var(0)→� with β such that β(0) = (var(0)→�)→⊥.
Let R = {(var(0), β, var(0)→�), (⊥, β,�)}. Then R is a partial subtyping so
var(0) ≤β var(0)→� and the subtyping for the types above should be derivable
with the subtyping rules.

Using the standard structural subtyping rules with the equality rules from
Amadio and Cardelli to try to prove these subtypings results in a cycle—after
some steps what needs to be proved is what we are trying to prove. Here is the
attempt for the first subtyping (where B = α ≤ �→α and τ2 = rec α′.�→α′):

B � α ≤ �→α

B � � ≤ � B � α ≤ τ2
B � �→α ≤ �→τ2

� τ2 = �→τ2
� �→τ2 = τ2
B � �→τ2 ≤ τ2

B � �→α ≤ τ2
B � α ≤ τ2

Notice though that the steps make some progress, in that they use the structural
subtyping rule for function types at least once, so coinductive proofs would prove
this subtyping. A specialised rule for recursive types could prove this derivation,
but in the other example, we really need something like coinduction (where
B = α ≤ (α→�)→⊥):



74 N. Glew

B � α ≤ (α→�)→⊥
B � α ≤ α→� B � ⊥ ≤ �
B � (α→�)→⊥ ≤ α→�

B � α ≤ α→�

I will present normal inductive rules that in the rules that make progress, namely
the structural subtyping rules for function and forall quantified types, allow
the conclusion to be assumed in proving the subterms to have the appropriate
subtyping relationship. This modification of the standard rules is enough to get
sound and complete rules with respect to the tree interpretation of types.

Subtyping assumptions, ranged over by metavariable A, are sets of pairs of
types, which I will write in the form τ1 ≤ σ1, . . . , τn ≤ σn. Subtyping bounds,
ranged over by metavariable B, have the form α1 ≤ τ1, . . . , αn ≤ τn where the αi
are distinct. The meaning of subtyping bounds in a distinguishing environment
is a bound set and is defined as:

treeof (α1 ≤ τ1, . . . , αn ≤ τn)η = λn.

{
treeof (τi)η η(αi) = var(n)
var(n) otherwise

The rules for type equality and subtyping appear in Figure 2 and define two
judgements. � τ1 = τ2 asserts that types τ1 and τ2 are equal and A;B � τ1 ≤ τ2
asserts that τ1 is a subtype of τ2 under assumptions A and bounds B. The equal-
ity rules are those of Amadio and Cardelli. The interesting rules are eqroll and
equnq. The former asserts that a recursive type is equal to its unrolling. The
latter asserts that recursive types are unique—more specifically that two types
that satisfy the same syntactically contractive equation are equal. It is key to
proving completeness of the equality rules with respect to the tree interpreta-
tion of types. The subtyping rules are also fairly standard. There are the usual
reflexivity, transitivity, variable bound, top, and bottom rules. Rule stassume
allows an assumption to be used. Rule stfun is the usual structural subtyping
rule except that the conclusion can be assumed while proving the the argument
types are contravariantly related and the result types are covariantly related.
Rule stall is the Kernel rule for F-bounded forall quantified types, again where
the conclusion can be assumed when proving that the body types are covariantly
related.

We are mainly interested in judgements of the form ∅;B � τ1 ≤ τ2, which I
will write simply as B � τ1 ≤ τ2—the assumption sets are really just for internal
use to prove such judgements.

I proved the soundness and completeness of the equality rules in previous
work [Gle02a]. I repeat those proofs for the system in this chapter in the com-
panion technical report [Gle12], and I will use them in proving the soundness
and completeness of the subtyping rules.

3.3 Soundness

If two types are subtypes then the trees that they map to are subtypes.
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� τ1 = τ2

� τ2 = τ1
� τ1 = τ2

eqsym
� τ1 = τ2 � τ2 = τ3

� τ1 = τ3
eqtrans

� α = α
eqvar � � = � eqtop � ⊥ = ⊥ eqbot

� τ1 = τ2 � σ1 = σ2

� τ1→σ1 = τ2→σ2

eqfun
� τ1 = τ2 � σ1 = σ2

� ∀α ≤ τ1.σ1 = ∀α ≤ τ2.σ2

eqall

� τ1 = τ2
� rec α.τ1 = rec α.τ2

eqrec � rec α.τ = τ{α �→ rec α.τ} eqroll

� τ1 = σ{α �→ τ1} � τ2 = σ{α �→ τ2} σ ↓ α
� τ1 = τ2

equnq

A;B � τ1 ≤ τ2

� τ1 = τ2
A;B � τ1 ≤ τ2

stref
A;B � τ1 ≤ τ2 A;B � τ2 ≤ τ3

A;B � τ1 ≤ τ3
sttrans

τ1 ≤ τ2 ∈ A

A;B � τ1 ≤ τ2
stassume

α ≤ τ ∈ B

A;B � α ≤ τ
stbound

A;B � τ ≤ � sttop
A;B � ⊥ ≤ τ

stbot

A′ = A, τ1→σ1 ≤ τ2→σ2

A′;B � τ2 ≤ τ1
A′;B � σ1 ≤ σ2

A;B � τ1→σ1 ≤ τ2→σ2
stfun

A′ = A,∀α ≤ τ1.σ1 ≤ ∀α ≤ τ2.σ2

� τ1 = τ2
A′;B,α ≤ τ2 � σ1 ≤ σ2

α /∈ fv(A) ∪ fv(B)

A;B � ∀α ≤ τ1.σ1 ≤ ∀α ≤ τ2.σ2
stall

Fig. 2. Typing Rules

Theorem 4. If B � τ1 ≤ τ2 and η is distinguishing then treeof (τ1)η ≤treeof (B)η

treeof (τ2)η.

Proof: The proof uses a generalisation of subtyping on trees that takes assump-
tions into account, and is then by induction over the derivation of the subtyping
judgement using a lemma that says that subtyping with assumptions has prop-
erties similar to those of the rules. The soundness of the equality rules is also
used for Rule stref. ��

3.4 Completeness

If the trees two types map to are subtypes then the rules can derive that they
are subtypes.

Theorem 5. If η is distinguishing and treeof (τ1)η ≤treeof (B)η treeof (τ2)η then
B � τ1 ≤ τ2.
The proof is in the companion technical report [Gle12]. As previously mentioned,
the key to the proof is the characterisation of subtyping. It states that no final
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subproblem fails. Each final subproblem can be represented using node identifiers
and these node identifiers come from a finite set of equivalence classes, thus on
any sufficiently long path there will be a repeat of which equivalence class is the
subtype and which equivalence class is the supertype. For any node identifier
of the initial and final subproblems the proof builds a canonical type. Then the
proof shows that Rule stbound can mimic promotion to a bound and that if two
node identifiers match then one of the Rules eqvar and stref, sttop, stbot,
stfun, or stall can prove the required subtyping. For stall the proof uses the
fact that the left subtrees are equal and the completeness of the equality rules
to show that the bound types are equal; for the right subtree and both subtrees
of stfun the proof recurses to a longer path, for which there are initial and
final subproblems. Finally at a repeat in the equivalence classes the proof shows
that the requried subtyping is in the assumption set and uses Rule stassume.
Finally, in various places the proof needs to show that the canonical types match
up to other types, which it does by showing that they generate the same trees
and by using the completeness of the equality rules; Rule sttrans is used to
combine everything together. The proof is just going through all the details of
the above sketch.

4 Binding-Tree Automata

This section defines a notion of tree automata that generate trees and a con-
struction that determines subtyping—it takes two tree automata to a DFA whose
language is empty exactly when the subtyping relation holds.

A binding-tree automata is a quadruple (Q, i, δ, lf ) such that Q is a finite
set of states, i ∈ Q is the initial state, δ : Q × {L,R} ⇀ Q is the transition
function, lf : Q→ {fv(n) | n ∈ N}∪{bv(q, �) | q ∈ Q∧ � ∈ {L,R}}∪{�,⊥,→, ∀}
is the labelling function, δ(q, �) is defined if and only if lf (q) ∈ {→, ∀}, and
lf (q) = bv(q′, �) only if lf (q′) = ∀ and all paths from i to q go through q′ and
on the last time through q′ they follow an � edge. Intuitively, a tree automata
takes as input a path through a tree and outputs the node label at the end of
that path, which can be either a free variable (of the original tree), a bound
variable (that bound by the last time through the identified state), top, bottom,
function, or forall.

The tree that a tree automata generates is defined as follows:

bind(ql, �) =

{
1 ql = ∀
0 ql �= ∀

shift(f, q := n) = λq′.
{

0 q′ = q
f(q′) + n q′ �= q

δ̂((q, n, f), �) = (δ(q, �), n+ bind(lf (q), �), shift(f, q := bind(lf (q), �)))

l̂f (q, n, f) =

⎧
⎨

⎩

n+m lf (q) = fv(m)
f(q′) lf (q) = bv(q′, �)
lf (q) otherwise

treeof (Q, i, δ, lf ) = λp.l̂f (δ̂∗((i, 0, λq.0), p))
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where δ∗ is the obvious lifting of δ to sequences of edges. The formal definition
just tracks enough information to determine the de Bruijn indices for the states
labelled as free and bound variables, otherwise it follows the intuition above.

Binding-tree automata generate regular binding trees and all regular binding
trees are generated by a binding-tree automata.

Theorem 6. If ta is a binding-tree automata then treeof (ta) is a regular binding
tree. If t is a regular binding tree then there exists a binding-tree automata ta
such that treeof (ta) = t.

4.1 Subtyping Algorithm

Now, I will define a construction that takes two binding-tree automata and
produces a deterministic finite-state automata (in the usual sense), such that the
DFA’s language is empty if and only if the trees of the two binding-tree automata
are in the subtyping relation. In particular, the DFA will search for paths that
show that the two trees are not subtypes. The characterisation of subtyping tells
us that such paths exists if and only if the trees are not subtypes. Most of the
information for determining if states match after promotion is available from
the labelling functions, but some additional information is needed. Specifically,
the construction must track which binding states in one binding-tree automata
correspond to which binding states in the other binding-tree automata, in order
to determine if two bound variables match or not. This correspondence will be
tracked by partial bijections, defined next.

A partial bijection R between sets A and B is a set of pairs from A and B such
that (a1, b1) ∈ R and (a2, b2) ∈ R implies that a1 = a1 if and only if b1 = b2.
Partial bijection update is defined as: R{a � b} = {(a′, b′) ∈ R | a′ �= a ∧ b′ �=
b} ∪ {(a, b)}.

An automata bounds is a finite function from de Bruijn indices to binding-tree
automata—de Bruijn indices without a bound are bounded by themselves. An
automata bounds generates a bound set as follows:

treeof (ba) = λn.

{
treeof (ba(n)) n ∈ dom(ba)
var(n) n /∈ dom(ba)

The input to the construction, an (automata) subtyping problem, is a triple
(taL, ba, taR) where taL and taR are binding-tree automata and ba is an automata
bounds. The construction will search over the various states of the various au-
tomata, so define a problem state of (taL, ba, taR) to be either (L, q) for q a state
of taL, (n, q) for n ∈ dom(ba) and q a state of ba(n), or (R, q) for q a state of taR.
Define the transition function, δ, and the labelling function, lf , for (taL, ba, taR)
by lifting the underlying transition functions and labelling functions in the ob-
vious way. The states of the DFA are quadruples (q1, φ, q2, R) where q1 and q2
are problem states, φ ∈ {+, ◦,−} is a variance (+ means that q1 should be a
subtype of q2; ◦ means that q1 should be equal to q2; − means that q1 should
be a supertype of q2), and R is a partial bijection between problem states.
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I build the formal definition of the construction up in several pieces. First, I
define how problem states are promoted, that is, if they are variables they are
replaced with their bounds, as follows: q ↪→(taL,ba,taR) (n, i) if lf (q) = fv(n), n ∈
dom(ba), and i is the initial state of ba(n); and q ↪→stp δ(q

′, L) if lf (q) = bv(q′, �).
Second, a DFA state matches, matchesstp(q1, φ, q2, R), exactly when one of

the following holds:

– lf (q1) = lf (q2) = fv(n),
– lf (q1) = bv(q′1, �), lf (q2) = bv(q′2, �), and (q′1, q

′
2) ∈ R,

– lf (q1) = � and φ = −, lf (q2) = � and φ = +, or lf (q1) = lf (q2) = �,
– lf (q1) = ⊥ and φ = +, lf (q2) = ⊥ and φ = −, or lf (q1) = lf (q2) = ⊥,
– lf (q1) = lf (q2) =→, or
– lf (q1) = lf (q2) = ∀.

Intuitively, a state matches if the base subtyping proposition holds for the nodes
represented by that state. Using it and the notion of promotion, I can define
a function that promotes a DFA state if possible to a matching DFA state. In
particular, define promotestp(q1,+, q2, R) = (q′1,+, q2, R) where q′1 is the first q′1
such that q1 ↪→∗

stp q
′
1 and matchesstp(q

′
1,+, q2, R) or q′1 = q1 if no such q′1 exists;

similarly, define promotestp(q1,−, q2, R) = (q1,−, q′2, R) where q′2 is the first q′2
such that q2 ↪→∗

stp q
′
2 and matchesstp(q1,−, q′2, R) or q′2 = q2 if no such q′2 exists;

define promotestp(q1, ◦, q2, R) = (q1, ◦, q2, R).
Third, the subtree of a DFA state along an edge is defined as follows:

subtreestp((q1, φ, q2, R), L) = (δ(q1, L),−φ, δ(q2, L), R{q1 � q2}) lf (q1) =→
subtreestp((q1, φ, q2, R), L) = (δ(q1, L), ◦, δ(q2, L), R{q1 � q2}) lf (q1) = ∀
subtreestp((q1, φ, q2, R),R) = (δ(q1,R), φ, δ(q2,R), R{q1 � q2}) lf (q1) ∈ {→, ∀}
(Where −+ = −, −◦ = ◦, and −− = +.) Intuitively it computes the state
that corresponds to the left or right subproblem of a DFA state, updating the
variance and binding correspondence in the appropriate way.

Finally, the subtype automata is defined as follows:

subtype(taL, ba, taR) =
(Q× Var ×Q× (Q� Q),
promotestp(qL,+, qR, ∅),
λ(q, �).promotestp(subtreestp(q, �)),
{q | ¬matchesstp(q)})

where Q is the set of problem states of (taL, ba, taR), qL is the initial problem
state of taL, and qR is the initial problem state of taR.

The DFA so constructed has an empty language exactly when the subtyping
relation holds.

Theorem 7. L(subtype(taL, ba, taR)) = ∅ if and only if treeof (taL) ≤treeof (ba)

treeof (taR).

Proof: (Sketch) First the proof shows that for all the paths for which there
are initial subproblems that the states computed by the subtype DFA (in some
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sense) generate the corresponding trees of the subproblem. If the subtyping holds
then all the final subproblems do not fail. The proof then shows that those paths
match in the subtype DFA and are thus not in the language. The only other paths
the DFA considers are following a left edge from a forall matching subproblem,
where the DFA switches to invariance and becomes an equality checker. Since
to forall match the left subtrees must be equal, none of those paths will be in
the language. Conversely if the language is empty then the proof shows that
the left edge from forall matching states implies the left subtrees are equal and
thus the corresponding final subproblem does not fail, and that all other final
subproblems do not fail from their paths not being in the language. Thus by
characterisation of subtyping the subtyping holds. The rest of the proof is just
working through all the tedious details. ��
Since determining if the language of a DFA is linear time, the construction pro-
vides an exponential time algorithm for deciding subtyping (at least of automata).

4.2 Polynomial Time Algorithm

The key to getting a polynomial time algorithm is that the binder correspondence
information is only used in very limited ways in the subtype DFA, and so it
can almost be ignored. For this section, fix a subtyping problem stp. Let Q
be the problem states of stp, lf the labelling function for problem states, and
subtype(stp) = (Q′, i, δ′, F ).

A triple is binder correspondence independent, bcistp(q1, φ, q2), exactly when
φ = + and lf (q2) is not a bound variable, φ = ◦ and either lf (q1) or lf (q2) is not
a bound variable, or φ = − and lf (q1) is not a bound variable; bcistp(q1, φ, q2, R)
exactly when bcistp(q1, φ, q2). If bcistp(q1, φ, q2) then matchesstp(q1, φ, q2, R1) if
and only if matchesstp(q1, φ, q2, R2) for any R1 and R2. Then observe that if
δ′∗(i, p�) is defined then δ′∗(i, p) is binder correspondence independent. Thus
if δ′∗(i, p) is binder correspondence independent then determining if p ∈ F can
be done without tracking the binder correspondence at all.

Now consider p such that δ′∗(i, p) is binder correspondence dependent. By
definition δ′∗(i, p) = promotestp(qL, φ, qR, R) for some qL, φ, qR, and R. The first
three can be determined without tracking the binder correspondence. Consider
what information is needed to determine if p ∈ F . Case 1, φ = ◦: In this case
lf (qL) = bv(q′L, �L) and lf (qR) = bv(q′R, �R) and p ∈ F if and only (q′L, q

′
R) ∈ R.

Case 2, φ = +: In this case lf (qR) = bv(q′R, �). If there is no q′L such that
(q′L, q

′
R) ∈ R then p ∈ F . If there is then p ∈ F if and only if qL ↪→∗

stp q
′
L. Case 3,

φ = −: similar to the previous case.
My strategy for determining the above conditions is to compute facts of the

form q1 � q2, q ↑, and ↑ q at the triples that are binder correspondence de-
pendent. The meaning of q1 � q2 is that there is an R possible at the triple
with (q1, q2) ∈ R; similarly q ↑ means there is an R possible at the triple with
no q′ such that (q, q′) ∈ R; and ↑ q means there is an R possible at the triple with
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no q′ such that (q′, q) ∈ R. Computing such facts is a simple dataflow problem.
If (q1, φ, q2) is such that lf (q1) = lf (q2) = ∀ then q1 � q2 is generated, q′1 � q′2
is propagated if qi �= q′i, q ↑ is propagated if q �= q1, ↑ q is propagated if q �= q2,
q1 � q where q �= q2 is changed to ↑ q, and q � q2 where q �= q1 is changed to
q ↑. Function states propagate all facts.

In summary, the polynomial time algorithm computes the triples that are
possible and checks that the binder correspondence independent ones match and
sets aside the binder correspondence dependent ones. Then it sets up and solves
the dataflow problem outlined above. Finally it uses the computed facts at the
binder correspondence dependent triples to determine if they match or not. The
algorithm is at worst O(n4) as quadratic dataflow facts need to be propagated to
quadratic nodes, and the other phases are at least as good. It might be possible
to do better by exploiting the scoping requirements of binders, but I have not
explored this possibility.

5 Discussion

To put all the pieces together, all we need to do is define a way to go from
types to binding-tree automata. In my previous work I defined exactly such a
transformation—in particular given a type τ and a distinguishing environment
η there is a binding-tree automata automataof η(τ) constructable in linear time
such that treeof (τ)η = treeof (automataof η(τ)). Combining that algorithm with
the one in Section 4, gives a polynomial-time algorithm for deciding subtyping
on the types themselves. The soundness and completeness of the rules and cor-
rectness of the algorithm means both that this algorithm is deciding subtyping
according to the type rules, and that the type rules correspond to the tree in-
terpretation of subtyping, which hopefully corresponds to our intuitive notion of
what subtyping should be for the system under consideration.

Theorem 8. If η is distinguishing then:

B � τ1 ≤ τ2
⇔

L(subtype(automataof η(τ1), automataof η(B), automataof η(τ2))) = ∅

This chapter considered the Kernel rule for subtyping forall quantified types. As
previously mentioned, that rule is not the most general rule that is sound for such
types. I believe that the definition of subtyping for binding trees and the typing
rules can be modified for the most general rule and the soundness and complete-
ness theorems can still be proven, but I have not done this. Nothing in the proofs
is critically dependent on the bound being invariant. The construction of a DFA
for subtyping, however, is critically dependent on the bound being invariant. In
particular, to augment the construction for the full rule first requires tracking
which side is the tightest bound (easy to do), but also requires figuring out the
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binder correspondence after promoting to a bound, which requires saving the
correspondence at the binding point leading to a linked list like correspondence
information—no longer a finite set. Thus I believe this system is undecidable for
similar reasons to full F≤.

There is another rule for subtyping forall quantified types that allows the
bound to be contravariant but considers the variable unbounded in the body
type. It is usually ignored as it leads to a lack of principal types. I believe
that this rule could also be worked into my definition of trees, type rules, and
automata construction—the variables bound by such quantifiers have no bounds,
and so they act very similar to function types. I use a self quantifier in my object
encoding that requires the body type to be covariant. As the body of the self
quantifier is also the bound of the quantified variable, the typing rules cannot
have an invariant bound. This variant with unbounded variables for checking
the body is the most appropriate. The full rule is likely undecidable, and lack
of principal types is avoided because the introduction form for self quantifiers
includes a full type annotation, unlike for type lambdas that include only a
partial type annotation.

Thus I believe that the results of this paper can be extended to handle other
base types, first-order constructs of various flavours, other bound rules, and
other second-order constructs like existentials and self quantifiers. Extending to
higher-kinded systems is definitely future work and might not be possible. The
first problem is that Fω with equirecursive types has the simply-typed lambda
calculus with general recursion at the type level, hence guaranteeing termination
is probably a necessary first requirement.

References

[AC93] Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on
Progamming Languages and Systems 15(4), 575–631 (1993)

[CCH+89] Canning, P., Cook, W., Hill, W., Mitchell, J., Olthoff, W.: F-bounded quan-
tification for object-oriented programming. In: 4th ACM Conference on
Functional Programming and Computer Architecture, London, UK, pp.
273–280. ACM Press (September 1989)

[CG99] Colazzo, D.,Ghelli, G.: Subtyping recursive types in kernel fun. In: 1999 Sym-
posium on Logic in Computer Science, Trento, Italy, pp. 137–146 (July 1999)

[Gle00] Glew, N.: An efficient class and object encoding. In: ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
Minneapolis, MN, USA. ACM Press (October 2000)

[Gle02a] Glew, N.: A theory of second-order trees. In: European Symposium on
Programming 2002, Grenoble, France (April 2002)

[Gle02b] Glew, N.: A theory of second-order trees. Technical Report TR2001-1859,
Department of Computer Science, Cornell University, 4130 Upson Hall,
Ithaca, NY 14853-7501, USA (January 2002)

[Gle12] Glew, N.: Subtyping for F-bounded quantifiers and equirecursive types (ex-
tended version). arXiv:1202.2486 (February 2012), http://arXiv.org/



82 N. Glew

[GP04] Gauthier, N., Pottier, F.: Numbering matters: First-order canonical forms
for second-order recursive types. In: 9th ACM SIGPLAN International Con-
ference on Functional Programming, Snowbird, UT, USA, pp. 150–161.
ACM Press (September 2004)

[KPS95] Kozen, D., Palsberg, J., Schwartzbach, M.: Efficient recursive subtyping.
Mathematical Structures in Computer Science 5(1), 113–125 (1995)

[Pie94] Pierce, B.: Bounded quantification is undecidable. Information and Com-
putation 112, 131–165 (1994)



Inferring Evolutionary Scenarios in the Duplication,
Loss and Horizontal Gene Transfer Model
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Abstract. An H-tree is a formal model of evolutionary scenario. It can be used to
represent any processes with gene duplication and loss, horizontal gene transfer
(HGT) and speciation events. The model of H-trees, introduced in [26], is an ex-
tension of the duplication-loss model (DL-model). Similarly to its ancestor, it has
a number of interesting mathematical and biological properties. It is, however,
more computationally complex than the DL-model. In this paper, we primarily
address the problem of inferring H-trees that are compatible with a given gene
tree and a given phylogeny of species with HGTs. These results create a mathe-
matical and computational foundation for a more general and practical problem
of inferring HGTs from given gene and species trees with HGTs. We also demon-
strate how our model can be used to support HGT hypotheses based on empirical
data sets.

Keywords: Phylogenetic tree, Duplication-loss model, Rewrite system, Hori-
zontal gene transfer.

1 Introduction

Horizontal gene transfer (HGT) is an evolutionary process in which genetic material is
transferred between two unrelated or even distant organisms. For instance, the increased
drug resistance in bacteria was proven to be spread by HGT for the first time in [42].
This biological phenomenon is considered to be an important factor in the evolution
of a single cell organism like bacteria or archaea [23]. The presence of HGT, however,
creates a serious difficulty in the process of inference of phylogenetic relationships from
gene sequences, where the vertical transfer, that is, the transfer of genetic sequences
from a parent to its offspring, is the main assumption.

In this paper, we are interested in the duplication-loss model, called DL-model [24,
20, 39, 40, 32, 44, 21, 33, 4, 47, 21, 3, 12, 5, 6, 1, 7, 18, 11, 9, 10, 31, 30, 16, 28]
and its HGT extension [17, 38, 25, 35, 34, 19, 49, 46]. The DL model was originally
developed to explain the differences between two incongruent gene and species trees.
Under the assumption, that the species are ‘containers’ for the genes, one can generalize
this property and embed a gene tree into a species tree by appropriate allocation of du-
plication and loss events in these trees. Such embedding, represented in the DL model
by reconciled tree [43], reflects the common evolutionary history of the genes and their
species, and addresses well the question of biological correctness. The reconciled tree,
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created in a process of gene-species reconciliation, has a number of interesting math-
ematical properties. One of the most important properties can be expressed in terms
of gene duplication and loss events: the reconciled tree requires the minimal number
of these events [14, 29]. In this sense, the model of reconciled trees is based on par-
simony principle. Reconciled trees have been intensively studied in various theoretical
and biological contexts in the last 20 years. The recent interest is also focused on non-
parsimonious scenarios [26, 29, 27].

a b c a b b c

Speciation

Gene transfer

Gene duplication

Gene loss

Evolution of species Evolution of genes

Fig. 1. Evolution of species and genes with HGTs

The DL-model can be extended by incorporating HGTs (see Fig. 1). In our previous
paper [26], we introduced a formal framework of evolutionary scenario, called H-tree,
which represents a common history of genes and species in the presence of macro-
evolutionary events such as gene duplication and loss, speciation and HGT. H-trees can
be used to represent all possible evolutionary scenarios under the above assumptions.
Moreover, the model provides a detailed information on the evolution of a single gene
family. For example, all the evolutionary events can be easily located in the species.
Furthermore, an H-tree can be useful in the analysis of the evolution of genomes, for
instance, in detecting whole genome duplications, multiple HGTs, etc.

As already mentioned, HGTs have been intensively studied in various theoretical
contexts such as reticulation networks, tree rearrangements and reconciliation based
models [45, 8, 36, 13, 41]. In all these contexts the general problem of HGT infer-
ence is computationally demanding [34, 15]. Our model of a species tree with HGTs is
naturally compatible with the models introduced in [34].

In the present paper, we analyse the properties of H-trees that represent the common
evolution of a given gene tree and a given species graph, that is, a species tree with
HGTs. H-trees have a relatively simple rewrite system for finding an H-tree with a
minimal cost (the number of duplication, loss and horizontal transfer events). As shown
in [26] every H-tree has a normal form under the above mentioned system of rewrite
rules. The main contribution of the present paper is to propose the notion of a scenario
with respect to a gene treeG and a species graphS, and show a correspondence between
scenarios and H-trees in normal form which are compatible with G and S. Scenarios
are just functions between leaves of certain trees, and therefore they represent relatively
easy objects to work with. We then show how to compute the cost of an H-tree directly
from the corresponding scenario. In this way we reduce the problem of finding H-trees
with a minimal cost to finding the scenarios which minimize the cost.
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This paper is organized as follows. In Section 2 we present an introduction to the
model of H-trees. This section also contains preliminary definitions concerning trees,
species graphs and others. Section 3 is devoted to setting up the main technical lemmas
which will be used in the proofs of the main results, as well as the construction of an H-
tree from a given gene tree G, a species graph S, and a scenario for G and S. Section 4
contains the main results of the present paper: correspondence between scenarios and
H-trees in normal form compatible with a gene tree and a species graph. It also contains
formulas for computing the cost with respect to a given scenario. Section 5 presents the
results of applying the machinery developed in the present paper to tackle the hypothesis
of horizontal gene transfer from Wolbachia strains to mosquitoes, as described in [48].
Finally Section 6 contains several concluding remarks.

2 The Model of H-Trees

We start with several standard definitions related to graphs and sequences. Let G denote
a directed graph 〈V, E〉, where V is a set of nodes and E ⊆ V × V is a set of edges. A
path in G is a sequence of nodes p1 p2 . . . pk, denoted by p, such that 〈pi, pi+1〉 ∈ E, for
i = 1, 2, . . . , k − 1. The length of p is denoted by |p|. If there is a directed path from p
to q it is denoted p � q, and by p �+ q if the length of the path is greater than zero.
If p is a sequence of k elements from the domain of a mapping f , then f [p] denotes the
sequence f (p1) f (p2) . . . f (pk).

By G(v) we denote the minimal subgraph of G that contains all nodes and edges
that can be reached from a node v by a path. Let G be a rooted directed acyclic graph
(rDAG). Then G has a distinguished node v, called a root, denoted by root(G), such that
G = G(v). A leaf in G is a node with no children. Non-leaf nodes are called internal.
By LfG we denote the set of all leaves in G. Similarly, by IntG we denote the set of all
internal nodes of G. The set of all paths in rDAG G starting in the root and terminating
in a leaf is be denoted by ΠG. If G and G′ are graphs, then the notation f : G → G′

denotes a mapping from the nodes of G into the nodes of G′.
A directed rooted graph B is a tree, if every node of B can be reached from root(B)

by a unique path. We call a tree B binary (or semi-binary) if each internal node of T has
exactly (or at most, respectively) two children. Given a binary tree B and A ⊆ LfB, the
restriction of B to a set A is obtained by removing all leaves which are not in A and then
suppressing all internal nodes of degree two. This restriction will be denoted by B|A.

By lcaB we denote the lca-mapping in B; that is, lcaB(a, b) is the least common
ancestor of nodes a and b in B.

Let I be a set of species names. A gene tree is a binary tree whose leaves are labeled
by the elements from I. The labeling need not be one-to-one. A species tree is a gene
tree whose leaves are uniquely labeled. In some cases, we use the notion of semi-binary
species tree, that is, a semi-binary tree whose leaves are uniquely labeled by the species
names.

Let G be a gene tree. By L(G) we denote the set of all species names (labels) in G.
For a node v of G, a cluster of v, denoted by mT

v , is the set L(G(v)). By C(G) we denote
the set of all clusters of G. For convenience, when writing the set {x1, x2, . . . , xk} we
usually skip the curly brackets and write x1x2 . . . xk. We use the standard parenthesis
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notation for gene/species trees defined by the following set of productions B→ a|(B, B)
where a ∈ I (we omit straightforward details).

Let F be a family of subsets of I. We call F an I-family if, for each A and A′ in F
with A ∩ A′ � ∅, we have either A ⊆ A′ or A′ ⊆ A. It can be easily proved that, for any
I-family F , there exists a species tree B such that F ⊆ C(B). The converse also holds.

2.1 HGTs and Species Graphs

Modeling both HGTs and a phylogeny of species is a non-trivial task due to the po-
tentially complex time dependencies that may occur between transfers. For example,
a transfer cannot move genetic sequence backwards in time neither cross with another
transfer. Here, we formally analyse the relations between transfers and introduce the
notion of a species graph and an H-tree, and summarize their properties. Please refer to
[26] for more details and examples.

A species graph is an ordered triple S = 〈V, E,H〉 such that B = 〈V, E〉 is a semi-
binary species tree and H ⊆ V × V satisfies the following conditions:

(HR1) For every γ ∈ H, nodes of γ are not on a path in B
(HR2) For every γ ∈ H, both nodes of γ have out-degree 1 (in B).
(HR3) No two edges in H have a node in common.
(HR4) Every node of V with out-degree 1 is contained in an edge from H
(HR5) The relation

� = {〈γ1, γ2〉 ∈ H2 | there exists a path in B from a node of γ1 to a node of γ2}

is a partial order in H.

Edges of H are called horizontal transfers and the relation � is called a dependency
relation.

Observe that it follows from (HR1) that for all v ∈ V , we have 〈v, v〉 � H and that E
and H are disjoint. It also follows from (HR5) that � is always reflexive and transitive.
We will refer to the items related to a given species graph S by using it as an index. So,
HS denotes the set of horizontal transfers of S, etc. The lca-mapping in S, denoted by
lcaS, and clusters are inherited from the semi-binary tree BS; for example, the cluster
of a transfer node equals the cluster of its child.

The above definition of a species graph, although simpler than the one presented in
[26], can be easily shown to be equivalent.

Let F be an I-family and let H be a set. A mappingA : H → F ×F which assigns
pairs of disjoint subsets to elements of H is called a transfer assignment. Instead of
writingA(γ) = 〈A, B〉, we use, throughout the rest of this work, a notation A

γ
→B ∈ A.

2.2 H-Trees and the Rewrite System

In this section, we introduce the crucial notion of an H-tree. The following symbols will
be used: � (duplication), ◦ (loss), (speciation), � (gene) and→ (HGT).

An H-tree is a tuple T = 〈I,H, B,A,�〉, where I is the set of species names, H is
a set whose elements will be called transfers, B = (V, E) is a binary rooted tree such
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that each node of V is labeled by a non-empty subset of I, function A : H → F × F
is a transfer assignment over H such that F is an I-family that contains all labels
from B, there exists a partial order �∗ such that for γ, γ′ ∈ H if A(γ) = 〈A1, A2〉 and
A(γ′) = 〈A′1, A

′
2〉, then:

(HD1) if Ai ⊂ A′j, for some i, j ∈ {1, 2}, then γ′ �∗ γ,
(HD2) if Ai = A′j, for some i, j ∈ {1, 2}, then γ′ �∗ γ or h �∗ γ′,
(HD3) if a node of γ′ is on the path in B from the root to a node of γ, then γ′ �∗ γ,

and � is the least partial order �∗ satisfying conditions (HD1)-(HD3). For v ∈ V , let
Λv denote the label of v. V is divided into five disjoint subsets: V�, V◦, V�, V , and
V→, whose members are called gene, loss, duplication, speciation and transfer nodes,
respectively. The labeling system is subject to the following conditions:

(L1) V� ∪ V◦ = LfB,
(L2) the nodes of V� are labeled by singletons,
(L3) the labels of a duplication node and its children are equal,
(L4) if v is a speciation node with two children a and b, then Λa ∪Λb = Λv and Λa ∩Λb

= ∅,
(L5) if v is a transfer node with two children a and b, then Λa ∩ Λb = ∅ and for a

certain γ ∈ H we have Λa
γ
→Λb ∈ A (or with a and b interchanged). In this case

we set Λv = Λa and we call the edge 〈v, b〉 horizontal and we say that this edge is
associated with transfer γ.

The least partial order on H which satisfies conditions (HD1)-(HD2) will be called hor-
izontal dependence onA. It has been shown in [26] (Lemma 2.4) that for any horizontal
dependence� onA : H → F×F : (i) there exists a species graphS such thatF ⊆ C(S),
(ii) there exists a bijection φ : H → HS that preserves labels, and (iii) φ[�] =�S.

The careful reader may have noticed that not every transfer γ ∈ H has to be asso-
ciated with a transfer node in T . For a similar reason not every species a ∈ I has to
be present in B. Note that the label of each internal node of an H-tree can be easily
reconstructed from the labeling of its leaves.

An H-tree is a formal representation of an evolutionary scenario. Each edge in the H-
tree represents the evolution of a single gene lineage between two neighboring macroevo-
lutionary events such as speciation, gene duplication, gene loss or HGTs. In addition,
each horizontal edge represents a gene sequence that is horizontally transferred between
two distinct species. Please note, that a transfer (that is, an element of H) can be com-
posed of several horizontal edges. Therefore, any transfer can transmit more than one
gene sequence at the same time. Furthermore, the dependencies between transfers are
modeled by the relation �. Thus, for any two transfers α and β, if α � β, then α is older
than β. Please observe, that some transfers may be incomparable. In such a case, we do
not assume any time dependencies between them. See Fig. 4 for examples of H-trees.
With an H-tree T we associate a cost which is the total number of gene duplications,
losses and horizontal edges in T . For example, the cost of T ∗1,2,2 presented in Figure 4
equals 6.

The condition (HD1)-(HD3) are required to filter improper scenarios. For example,
if I = {a, b}, H = {α, β} and the transfer assignment is defined as follows:A(α) = 〈a, b〉
andA(β) = 〈b, ac〉, then there is no H-tree in which α � β.
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Let T be an H-tree. Similarly to species graphs, we use the lower index to refer to the
elements of the tuple defining H-tree, for example, HT is the set of transfers in T . For
convenience, sometimes we use T (a tuple) to denote the binary tree GT (an element of
the tuple) if this is not ambiguous. With this notation, we can naturally adopt already
existing tree-like operations to H-trees. For example, for a node v ∈ T , by T (v) we
denote the H-subtree of T rooted at v; that is, T (v) := 〈IT ,HT , BT (v),AT ,�T 〉.

In order to define operations on H-trees we introduce the notion of a pattern. Let I
a set of names of species and H a set of transfers be fixed. Consider terms generated by
the following grammar:

P→ ∅H | a | A◦ | (P, P) | (P, P)� | (P, P)
γ
→

where a ranges over I, A ranges over subsets of I, and γ ranges over H. The other
symbols in the above grammar, except P, are terminals.

A word generated by the above grammar determines a set of H-trees in the following
way:

(P1) ∅H is the set of all empty H-trees (that is, H-trees T = 〈I,H, B,A,�〉with B being
the empty tree),

(P2) a determines the set of all H-trees T = 〈I,H, B,A,�〉with B being a one element
tree whose gene node is labeled by {a},

(P3) A◦ is the set of all H-trees T = 〈I,H, B,A,�〉 with B being a one element tree
whose loss node is labeled by A,

(P4) (P,Q) is the set of H-trees 〈I,H, B,A,�〉 such that there exist H-trees
〈I,H, Bp,A,�〉 in P and 〈I,H, Bq,A,�〉 in Q, with roots p and q, respectively,
such that the root of B is a speciation node with two children p and q and the trees
Bp and Bq are rooted in H at p and q, respectively,

(P5) the definition for (P,Q)� is similar to (P4), except that the root of B is a duplica-
tion node,

(P6) the definition for (P,Q)
γ
→ is also similar to (P4), except that the root of B is a hor-

izontal node and the edge connecting the root and q is horizontal and associated
with γ.

Finally, we call a term P generated by the above grammar a pattern if it determines a
non-empty set of H-trees.

Let us recall that in the above definition the sets I and H are fixed. Even though it
may seem counterintuitive there is in general more than one empty H-tree as defined in
(P1) – empty H-trees differ in choice ofA and/or �. For technical reasons we decided
to choose this option. Same remark applies to objects defined in (P2) and (P3).

Note that if P is a pattern and an H-tree T is determined by P, then for every species
graphSwhich contains all transfers present inP, the following tuple 〈I,HS, BT ,AS,�S
〉 is an H-tree. We will denote it by P[S]. The above definition is correct since it easily
follows from (P1-P6) that if T1 and T2 are H-trees determined by the same pattern, then
BT1 = BT2 .

For example, T ∗1,2,2 (see Fig. 4g) has the pattern: P = (((a, b◦) , (c◦, b)
β
→) , ((c, b)

β
→,

ab◦) )�. Moreover, if S is the species graph presented in Fig. 4a, then P[S] uniquely
determines T ∗1,2,2.
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Next we define the notion of compatibility between an H-tree on one hand side, and a
species graph or a gene tree, on the other. Let T be an H-tree. It is said to be compatible
with a species graph S if

(i) every label in BT occurs as a cluster in S,
(ii) there exists a bijection φ : HT → HS that preserves clusters and φ[�T ] =�S.

T is said to be compatible with a gene treeG ifG can be obtained from BT by restricting
its leaves to gene nodes only (that is, if G = BT |V�). We will sometimes denote the gene
tree obtained in such a way from T by gene(T ). For G compatible with T we define a
mapping ΓT : LfG → V� such that, for a leaf g in G, ΓT (g) is the corresponding gene
node in T . Note that ΓT is a bijection.

By C(T ) we denote the class of species graphs compatible with an H-tree T . Sim-
ilarly, by C(G,S) we denote the class of H-trees compatible with a gene tree G and a
species graph S. By Λ(T ) we denote the label of the root of T . An H-tree T compatible
with S will be called S-proper, if Λ(F) = L(S).

SPEC
(A◦ , B◦)
A ∪ B◦

DUP
(P, Λ(P)◦)�

P
HGT

(P, B◦)
γ
→

P

TMOVE
((C◦ ,P) , (C◦ ,P) )�

(C◦ , (P,P)�)
CLOST

((P, Λ(Q)◦) , (Λ(P)◦ ,Q) )�
(P,Q)

H-TMOVE
((C◦ ,P)

γ
→, (C◦ ,P)

γ
→)�

(C◦ , (P,P)�)
γ
→

H-CLOST
(P, (Λ(P)◦ ,Q)

γ
→)�

(P,Q)
γ
→

(*)

(*) If for each α ∈ H(P), α ≺ γ

Fig. 2. Rewrite system. Rules of type I (top) and II (bottom). R,P and Q are patterns.

In Figure 2 we propose a system of rules for transforming H-trees so that the cost
of the tree is reduced after transformation. A rule, say R, is defined by R

R′ , where R
(premise) and R′ (conclusion) are patterns. The mechanism of applicability of the rules
is as follows: an H-tree T can be transformed into an H-tree T ′ by an application of a
rule R to a node v in T if and only T (v) ∈ R and T ′ is constructed from T by replacing
the subtree T (v) in T by T ′′ such that T ′′ ∈ R′. The defined transformation affects only
the binary tree part of the H-trees. All other items of the H-trees remain unchanged. We
denote by R(T, v) the result of reduction. The node v is called a redex.

The subtree S of T (v) is called principal for a rule R applied to a node v if:

(i) if R is one of the rules DUP, HGT, TMOVE, or H-TMOVE then S ∈ P,
(ii) if R is one of the rules CLOST, or H-CLOST, then S ∈ P, or S ∈ Q.

Moreover, for H-CLOST, which is not symmetric, we distinguish between left (pattern
P) and right (pattern Q) principal tree. The application of H-CLOST is conditional.

A reduction step is of type I (or type II) if the applied rule is of type I (or type II,
respectively).
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We conclude this section by stating the fundamental properties of H-trees which
were proved in [26]. Let ∼ be the least equivalence relation on the class of all H-trees
which contains the relation of reductions. Thus, if T ∼ T ′, then T can be transformed
into T ′ by applying rules zero or more times in any direction. An H-tree T is said to be:
(i) lost if it is equivalent to an H-tree with a pattern Λ(T )◦, (ii) in normal form if T has
no redexes, (iii) semi-normal if T has no redexes of type I, and finally (iv) fat if T is a
semi-normal tree such that for every H-tree T ′, if T ′ can be reduced into T , then T ′ is
not semi-normal. Hence fat trees are semi-normal, maximal in the class of semi-normal
trees with respect to the reduction relation.

Theorem 1. ([26]) Let T and T ′ be H-trees. Then: (i) (confluency) there exists a unique
H-tree T ∗ (in normal form) such that every sequence of reductions, which starts in T
and terminates in normal form, yields T ∗, (ii) (soundness) if T and T ′ are semi-normal
and equivalent then gene(T ) = gene(T ′) and C(T ) ⊆ C(T ′) (iii) T and T ′ are equivalent
iff T ∗ = T ′∗ and (iv) T ∗ is the unique tree with the minimal cost in the set of all trees
that are equivalent to T .

Similar results have been proven for the system of reversed type II rules restricted to
semi-normal H-trees.

Theorem 2. ([26]) Let T and T ′ be semi-normal H-trees. Then: (i) (confluency) there
exists a unique fat tree T f such that every sequence of reversed reductions of type II,
which starts in T and terminates in a fat tree, yields T f , (ii) T and T ′ are equivalent
iff T f = T ′ f and (iii) T f is the unique tree with the maximal cost in the set of all
semi-normal trees that are equivalent to T .

3 H-Trees and Scenarios

In this section, we investigate some properties of H-trees that are reconstructed from a
given gene tree and a given species graph. In other words, we present a detailed analysis
of the set C(G,S), where G is a gene tree and S is a species graph.

3.1 Reconstruction of Fat Trees

We start with a simple property that can be used to classify fat trees: if T is fat, then
each child of a duplication node in T is either a duplication node or is the root of the
tree with a pattern (B1◦, (B2◦, . . . (Bk◦, a) ∗k . . . )∗2)∗1. where a ∈ I, k ≥ 0 and, for
i = {1, 2, . . . , k}, ∗i ∈ { ,

γi
→}. An H-tree with the above pattern is called a chain tree

and the path connecting the root with the only gene node in a chain tree is called a core
path. In other words, this property states that each fat tree can be divided into two parts:
the top part consisting of duplication nodes and the rest with chain trees. For a gene tree
G and a species graph S, we denote by Fat(G,S) the set of all fat trees from C(G,S).

Let p be a path in S that terminates in a leaf. By cp(p) we denote a sequence of nodes
which is obtained from p by removing (I) each transfer’s start node if its termination
node does not belong to p and (II) each transfer’s termination node. We call cp(p) a
c-path.
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Lemma 1. Let S be a species graph. Then, there is a one-to-one correspondence be-
tween c-paths in S and chain trees compatible with S. Moreover, for any c-path c in S,
there exists exactly one path p in S such that p1 = c1, p|p| = c|c| and cp(p) = c.

Proof. We define two mappings between c-paths and chain trees from which the corre-
spondence can be deduced. (Mapping τS: c-paths→ chain trees). Let q be a c-path of the
length k. Then there exists a path p in S such that cp(p) = q. Assume that p terminates
in a leaf labeled by a. We claim that the procedure presented below defines a chain tree

compatible with S: (i) Ck = a if i = k, (ii) Ci = (mqi◦,Ci+1) h
→ if i < k and qi is the start

node of a transfer h (please note that if h = 〈qi, z〉 then then mz = mqi+1 = Λ(Ci+1) and
both nodes of h are in p), (iii) Ci = ((mqi \mqi+1 )◦,Ci+1) if i < k and qi is a non-transfer
node. Let τS(q) := C1[S]. Observe that mqi is the label of i-th node in the core path of
τS(q). The correctness of the above procedure follows from the definition of c-path.

(Mapping σS: chain trees→ c-paths). Let C be a chain tree compatible with S and
c the core path of C. We define a path q in S. (A0) Set qk to be the leaf labeled by
a ∈ Λck . Assume that i < k: (A1) if ci is a speciation node, then qi is a non-transfer node
whose cluster is Λci , (A2) if ci is a γ-transfer node then qi is the start node of a transfer
φ(γ) where φ is the bijection from the definition of compatibility. We claim that q is a
c-path. It remains to show that there exists a path from which q is obtained. For cases
A0-A2 we define a sequence pi. (A0) Let pk be one element sequence qk. (A1) pi is the
unique path from qi to qi+1 in T concatenated with the sequence pi+1. A2) In this case
Λci+1 = mv = mqi+1 where φ(γ) = 〈qi, v〉. Please observe that v is ancestor of qi+1. Let pi

be the shortest path connecting v and qi+1 in S concatenated with pi+1.
Finally we set σS(C) to be p1 with removed duplicates. It should be clear that, for

each c-path q in S, σS(τS(q)) = q, and, for each chain tree C compatible with S,
τS(σS(C)) = C.

The notion of c-path will be useful in proving combinatorial properties of fat H-trees
in the context of a given species graph S. Therefore, later on we use σS, defined in the
proof of Lemma 1, to denote the transformation of chain trees into the c-paths. Please
note that the result presented in the proof is much stronger. Indeed, for each chain tree
C, |C| = |σS(C)| and the label of i-th node of the core path of C equals the cluster of i-th
node of the c-path σS(C) for any i = 1, 2, . . . , |C|.

The second part of the Lemma follows immediately from the above proof. ��
Recall that ΠS denotes the set of all paths in S from the root to leaves.

Lemma 2. For a given species graph S with n leaves and h transfers: |ΠS| ≤ n2h.
Moreover, there exists a species graph S with h horizontal gene transfers such that

|ΠS| ≥ φh where φ = 1+
√

5
2 .

Proof. First let us assume that n > h. It can be proved, that the maximal number of
paths has the left species graph S shown in Fig. 3, where the subtree marked by star has
n−h leaves. For each node s of S, we show the number of possible paths that can reach
s starting from the root. Summing over leaves: |ΠS| =

∑h−1
i=0 2i + (n − h)2h ≤ n2h.

Now we analyse the other case. First we assume that n = 2. It is easy to see that the
species graph T with alternating transfers, presented in Fig. 3, has the maximal size
of |ΠS| over all species graphs with two leaves. Let ah denote the sequence of possible
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paths of T with h transfers. Then, a0 = 2, a1 = 3 and ah = ah−1 + ah−2 for h ≥ 2. Thus,

an = Fn+3, where Fn is the n-th Fibonacci number. Finally, ah = [ φ
h+3
√

5
], where φ = 1+

√
5

2

and [x] is the nearest integer function.

S

1 2

2 4

2h−1

2h2h−1

*

T

. . .

Fig. 3. Species graphs S and T . Horizontal gene transfers of T are alternating.

For the general case, where n ≤ h, it can be proved that the maximal number of
paths has the species graph S from Fig. 3 in which the subtree marked by a star has
the topology of tree T . Thus, this subtree has h − n + 2 alternating transfers. Finally:

|ΠS| =
∑n−3

i=0 2i + 2n−2[ φ
h−n+5
√

5
] ≤ 2n−2 − 1 + 2h−n+32n−2 ≤ n2h.

The second part of the lemma follows immediately from the above proof. ��

We proved that the number of chain trees in the species graph S can be exponential in
the number of HGTs in S. Having this, we can state a similar conclusion for Fat(G,S),
where G is a gene tree, by presenting a simple algorithm: (i) let {l1, . . . , ln} be a set of
leaves in G, (ii) for each cluster X in S and each sequence of chain trees 〈C1, . . . ,Cn〉
such that Ci and S are compatible, X = Λ(Ci) and the cluster of li equals the label of
the only gene node in Ci, construct a fat H-tree: take G and set elements of IntG to be
duplications labeled by X, then replace each li by Ci.

By Fat∗(G,S), we denote the set of all S-proper H-trees in Fat(G,S). For instance,
in Figure 4g, Fat∗(G,S) = {Fi, j,k | i ∈ {1, 2, 3}, j, k ∈ {1, 2}}.

The following lemma states the connection between S-proper trees and other trees
in Fat(G,S).

Lemma 3. Let F ∈ Fat(G,S).

(i) There exists F̃ ∈ Fat∗(G,S) such that F̃ can be transformed by a sequence of
TMOVE reductions into F′ and F is a subtree of F′.

(ii) There exists F̃ ∈ Fat∗(G,S) such that the normal form of F is a subtree of the
normal form of F̃.

Proof. We first prove (i). Let us start with the construction of F̃. Observe that the root
of each chain tree in F is labeled by Λ(F). Let s be the maximal sequence of non-
transfer nodes connecting the root of S and the non-transfer node in S whose cluster
is Λ(F). Please note that both the path and the non-transfer node are unique. It should
be clear that, for each C, the sequence q = s1 . . . sk−1σS(C) is a c-path in S. Moreover,
C∗ = σ−1

S (q) is the chain tree that contains C as a subtree and Λ(C∗) = L(S). Now we
can define F̃: (i) take F and replace each chain tree C in F by C∗ and (ii) set the label
of each duplication node to be Λ(S).
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a) Gene tree G and species graph S
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c) S-proper chain trees
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d) Other chain trees compatible with S

Chain c-path Clusters Leaf
tree in S in S′

S-proper chain trees
Ca

1 v1, v2, a abc, ab, a a
Ca

2 v1, v2,wb, a abc, ab, b, a a′

Ca
3 v1,wc,wb, a abc, c, b, a a′′

Cb
1 v1, v2, b abc, ab, b b

Cb
2 v1,wc, b abc, c, b b′

Cc
1 v1, c abc, c c

Non S-proper chain trees
Ca

4 v2,wb, a ab, b, a
Ca

5 wc ,wb, a c, b, a
Ca

6 v2, a ab, a
Ca

7 wb, a b, a
Ca

0 a a
Cb

3 v2, b ab, b
Cb

4 wc , b c, b
Cb

0 b b
Cc

0 c c

e) Properties of chain trees compatible with S

a b b c a b a/a′ c b/b′a/a′′

α α
β

f) Scenario and mapping for T2,2,2 and T ∗2,2,2

Fat tree Normal form Embedding

a b c b c b c c

Tc

b a c c b

T ∗c

a b c ab b c ab b c ab c ab

T3,2,2

b a c c b ab

T ∗3,2,2

a b a c b c ab b c ab c ab

T2,2,2

a b a b c c b ab

T ∗2,2,2

a b c b c ab b c ab c ab

T1,2,2

a b b c c b ab

T ∗1,2,2

a b c ab b a c b c ab c ab

T3,1,2

a b c b a c b ab

T ∗3,1,2

a b a c b a c b c ab c ab

T2,1,2

b a a c b
T ∗2,1,2

a b c b a c b c ab c ab

T1,1,2

a b c b

T ∗1,1,2

a b c ab b c ab b a c c ab

T3,2,1

b a c ab b a c

T ∗3,2,1

a b a c b c ab b a c c ab

T2,2,1

a b a b c b a c

T ∗2,2,1

a b c b c ab b a c c ab

T1,2,1

a b b c b a c

T ∗1,2,1

a b c ab b a c b a c c ab

T3,1,1

a b c b a b a c

T ∗3,1,1

a b a c b a c b a c c ab

T2,1,1

b a a c b a c

T ∗2,1,1

a b c b a c b a c c ab

T1,1,1

a b c b a c

T ∗1,1,1

g) Fat(S,G), corresponding normal forms and embeddings.

Fig. 4. An example of a gene tree and a species graph with corresponding H-trees. (a) Gene tree
G and a species graph S (see also Fig. 1). (b) The extended species tree with ΥS mapping (in
square brackets). See section 3.2 for more details. (c)-(e) Chain trees related to S. (f) An example
of a scenario. See section 3 for more details. (g) All fat and normal form H-trees compatible with
S and G. Fi, j,k is a fat tree containing chain trees: Ca

i , Cb
j , Cb

k and Cc
1. Fc contains chain trees: Ca

5,
Cb

4 and Cc
0. Note that the evolutionary scenario presented in Fig. 1 is represented here by T ∗3,2,1.
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Now we prove, for F ∈ Fat(G,S), F̃ can be transformed by a sequence of TMOVE
reductions into

F′ = (B1
◦, (B

2
◦, . . . (B

k−1
◦ , F) . . . ) ) , (1)

where Bi = Ai \Ai+1 and Ai is the cluster of si. This property can be proved by induction
on the size of G. The main step is depicted in Figure 5. We skip the rest of the proof for
brevity.

A1

F̃1 F̃2

F̃

T MOVE−−−−−−→
∗

A1

A1

B1

A2

B2

Ak−1

Bk−1
F1

A1

B1

A2

B2

Ak−1

Bk−1
F2

T MOVE−−−−−−→
∗

A1

B1

A2

B2

Ak−1

Bk−1

Ak

F1 F2

F′

Fig. 5. The main step of induction; here F = (F1, F2)�

For the proof of (ii) take F̃ from (i) of the present lemma. F̃ reduces to F′ (defined by
(1)). It is clear that the first k−1 non-lost nodes in F′ (that is, labeled by A1, A2, . . . , Ak−1,
respectively) cannot be a redex of any rule. Hence, if F∗ is a normal form of F, then
(B1
◦, (B

2
◦, . . . (B

k−1
◦ , F∗) . . . ) ) is a normal form of F′ and (by uniqueness) F̃. ��

It follows from Theorem 1 and 2 that the number of trees in normal form compatible
with a given gene tree G and a given species graph S equals |Fat(G,S)|. Obviously, it
is also equal to the number of ∼-equivalence classes in C(G,S). See Fig. 4g for more
examples. Note that T ∗c (the normal form of Tc) is a subtree of T ∗3,2,2 (the normal form
of T3,2,2).

In general F̃ from Lemma 3 is not uniquely determined. Note that the prefix s1 s2 . . . sn

from the proof of (i) of Lemma 3 is chosen arbitrarily. In particular, the prefix may con-
tain transfer nodes. However, in our example (Fig. 4) there is exactly one such prefix in
T ∗3,2,2 = (ab◦, T ∗c ). We skip details.

Let us assume that T1 and T2 are H-trees such that gene(T1) = gene(T2) and C(T1) =
C(T2). From this section, we know that, in general, these trees are not equivalent.

3.2 Extended Species Trees

A species graph that contains many HTGs has usually a complex structure where the
paths can intersect in many ways. This property creates a serious difficulty in the recon-
struction of H-trees that are compatible with the species graph and a given gene tree.
To overcome it, we ‘unfold’ the species graph into the tree-like representation. Based
on such representation we will be able to solve the reconstruction problem in a more
natural way. The unfolded species graph is called here an extended species tree.

In several contexts, for instance species graphs or H-trees, some edges of a directed
graph are related to HGTs. Therefore, we introduce a useful generic notation for such
edges. Let H is the set of horizontal edges in a directed graph G. We use the notation
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a
γ
→ b if 〈a, b〉 ∈ H is associated with a transfer γ. A non-transfer edge 〈a, b〉 is denoted

by a −
→ b. A generic notation � will be used for any directed edge. Reversed arrows

denote the reversed relations.
We extend the standard nested parenthesis notation for trees by defining a new pro-

duction for horizontal edges: T → (T, T )
γ
→. This production denotes the construction of

a tree similarly to (T, T ) with the exception that the edge connecting the root with the
right subtree is horizontal and associated with a transfer γ.

For the species graph S, the extended species tree, denoted by S′, is defined by
εS(root(S)), where

εS(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a if s is the leaf in S labeled by a, (i)
(εS(p), εS(q)) if p−←s−→q, q � p, (ii)
(εS(p), εS(q))

γ
→ if p−←s

γ
→q, (iii)

εS(v) if z
γ
→s−→v (iv)

(2)

Now we can define a mapping ΥS : S′ → S. For a node s′ in S′, ΥS(s′) = s such that
root(εS(s)) = s′ and s is not a transfer termination node. Please note that s is unique. An
example of a species graph and its extended species trees with ΥS mapping is depicted
in Figure 4b, where the nodes in square brackets denotes the mapping.

We start with Lemmas that connects the properties of paths in S and S′. Let rp(T, g)
denote the path starting in the root of a rooted tree T and terminating in the leaf g.

Lemma 4. Let S be a species graph. There is a one-to-one correspondence between
ΠS and LfS′ determined by the definition of an extended species tree.

Proof. It follows from the definition of S′ that a path from ΠS uniquely determines a
leaf in S′. Let s′ be a leaf in S′. Now, we show that there exists s ∈ ΠS such that cp(s) ⊆
ΥS[rp(S′, s′)]. Observe that if rp(S′, s′) contains exactly one node from a horizontal
edge then it must be the start node of this edge. We claim that removing mappings of
such nodes from ΥS[rp(S′, s′)] yields a c-path in S that starts in the root. By Lemma 1
we can reconstruct s from the c-path. In addition, we have ΥS[rp(S′, s′)] ⊆ s. We omit
details. ��

From the proof of Lemma 4, we define a bijection �S : ΠS → LfS′ such that, for a path
s in ΠS, �S(s) is the corresponding leaf in S′.

3.3 Scenarios and the Trees in Normal Form

Let G be a gene tree and S a species graph. A scenario is a mapping from the leaves of
G into leaves of extended species tree S′ which preserves labels. A scenario ξ : LfG →
LfS′ naturally extends to the least common ancestor mapping ξ̂ : G → S′ such that
ξ̂(g) = ξ(g) if g is a leaf and ξ̂(g) = lcaS′ (ξ̂(a), ξ̂(b)) if g ∈ IntG with two children a
and b. We show that scenarios are crucial for the reconstruction of trees in normal form
from a given gene tree G and a given species graph S.

First, we define a mapping ψG,S′ ,ξ. This definition is by induction on the structure of
G and S′. Formally, ψG,S′ ,ξ takes two arguments: a subtree G of G and a subtree S of
S′ such that ξ̂(root(G)) ∈ S and returns a pattern. If G = S = a, then ψG,S′,ξ(G, S ) = a
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(a is a label). Let s = root(S ), g = root(G) ∈ IntG with two children p and q. Then (the
subscripts are omitted in ψ):

ψ(G, S ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ψ(G(p), S ), ψ(G(q), S ))� if ξ̂(g) = s = ξ̂(p), (DP)
(ψ(G(p), S (a), ψ(G(q), S (b))) if ξ̂(p)� a −← s = ξ̂(g)

and s −→ b � ξ̂(q), (SP)
(ψ(G(p), S (a), ψ(G(q), S (b)))

γ
→ if ξ̂(p)� a −← s = ξ̂(g)

and s
γ
→ b � ξ̂(q), (HT)

(mS
b◦, ψ(G, S (a))) if ξ̂(g)� a −← s −→ b � a, (SP-L)

(mS
b◦, ψ(G, S (a)))

γ
→ if ξ̂(g)� a

γ
← s −→ b � a, (HT-L)

ψ(G, S (a)) if ξ̂(g)� a −← s
γ
→ b � a. (N-HT)

(3)

Finally, let Ψξ(G,S) = ψG,S′ ,ξ(G,S′)[S].

4 Main Results

Now we can state the main results of the present paper which establish a relationship
between scenarios and H-trees in normal form compatible with a given gene tree and a
species graph.

Theorem 3. Let G be a gene tree and S a species graph such that ∅ � L(G) ⊆ L(S).
Then

(i) For every scenario ξ for G and S, Ψξ(G,S) defines an S-proper H-tree in normal
form, compatible with G.

(ii) Conversely: for every S-proper tree T in normal form compatible with G, there
exists a scenario ξ for G and S such that Ψξ(G,S) = T.

(iii) Moreover, for every tree T in normal form compatible with G and S (not neces-
sarily S-proper), there exists a scenario ξ for G and S such that T is a subtree of
Ψξ(G,S).

Proof. First we prove (i). Observe that the size of the trees G and S in recursive ap-
plications of (3) decreases. Hence the procedure terminates. We claim that, for each
subtree G of G and each subtree S of S′ satisfying ξ̂(root(G)) ∈ S : (i) ψG,S,ξ(G, S )[S]
is an H-tree compatible with G and S, and (ii) Λ(ψG,S,ξ(G, S )[S]) = A, where A is
the cluster of ΥS(root(S )). We omit the technical proof of this properties. Finally,
ΥS(root(S′)) = root(S), therefore, by (ii), Ψξ(G,S) is an S-proper H-tree.

To prove thatΨξ(G,S) is in normal form we show that there is no redex inψG,S,ξ(G, S )
[S] for G and S subtrees of G and S′, respectively, satisfying ξ̂(root(G)) ∈ S . We omit
the subscript in ψ.

Observe that ψ(G, S ) cannot be a lost leaf. Hence, there is no pattern (A◦, B◦)∗ in
ψ(G,S′). Therefore, there is no redex of SPEC in ψ(G, S ). Other rules of type I can be
solved similarly.

For the rules of type II we start with a general observation. Suppose that Ψξ(G,S)
contains a redex of a rule of type II. Thus, there exist G and S such that the root
of ψ(G, S ) is the redex and ψ(G, S ) = (R1,R2)�. Such a pattern matches only (DP)
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case in (3). Hence, ξ̂(root(G)) = root(S ) = ξ̂(p), where p is a child of the root of
G. For TMOVE reduction we have R1 = (P,C◦) and R2 = (Q,C◦) . From (DP) we
have ψ(G(p), S ) = (Ri,C◦) , for some i ∈ {1, 2}. Such a pattern matches only (SP-L)
in (3) which requires ξ̂(root(G(p))) = ξ̂(p) � root(S ), a contradiction. CLOST and
H-TMOVE reductions are similar to TMOVE. The reduction by H-CLOST is more
complex due to its asymmetry. We have two cases where ψ(G(p), S ) is either (i) the
pattern of the left principal tree of H-CLOST or (ii) (C◦,Q)

γ
→, where Q is the pattern of

the right principal tree. The second case leads to a contradiction similarly to the previ-
ous rules. Let us consider case (i). Obviously, ψ(G(q), S ) contains an edge associated
with γ. We show that the same holds for ψ(G(q), S ). Let s = root(S ). Then, there is
exactly one horizontal edge associated with γ in S : s

γ
→s′. Moreover, there exists at least

one leaf a in G(p) such that s′ � ξ̂(a). Let v be the first node on the path from g to a
such that ξ̂(v) � s. Then, by (DP) and (HT-L): ψ(G(p), S ) = (. . . ψ(G(v), S (s′))

γ
→ . . . )�.

We proved that both subtrees of ψ(G, S ) contain a transfer γ. This is a contradiction
with the condition from H-CLOST as defined in Figure 2. This completes the proof of
(i). For the proof of (ii) and (iii) we will pause for now and prove one more lemma. ��

Let T be an H-tree compatible with a species graph S. We define a mapping ΞT : T →
S. For a node v in T , the cluster of ΞT (v) equals the label of v and: (i) if v is a leaf
or a speciation node, then ΞT (v) is the (unique) non-transfer node in S, (ii) if v is a
duplication node with two children p and q, then ΞT (v) is the least common ancestor
of ΞT (p) and ΞT (q) in the semi-binary tree of S, (iii) if v is a γ-transfer node, then
ΞT (v) is the start node of the transfer φ(γ), where φ is the bijection from the definition
of compatibility. Easy proof of the correctness of this definition is omitted.

Figure 6 depicts two equivalent H-trees T ∗3,1,2 and F3,1,2 (see Fig. 4g). For each node
of both H-trees the corresponding node from S is presented.

a b c

S
v1

wb

wc

v2

v1

v1

v1

ab

v2

wc

c

wb

b a

v1

c

v2

a b

v1

v1

ab

v2

wc

c b

v1

ab

v2

c

F3,1,2

v1

v1

wc

c

wb

b a

v2

a b

v1

ab

v2

wc

c b

T ∗3,1,2

Fig. 6. A species graph S and a mapping ΞT for nodes of T ∈ {F3,1,2 ,T ∗3,1,2}

Lemma 5. Let S be a species graph and T be an S-proper H-tree. Then,

(i) For each gene node t in T , there exists exactly one path ΔS(t) in ΠS such that

cp(ΔS(t)) ⊆ rd(ΞT [rp(T, t)]) ⊆ ΔS(t), (4)

where rd(r) is the sequence obtained from r by removing all duplicates; that is,
each riri+1 . . . ri+k is replaced with ri if ri = ri+1 = · · · = ri+k and k > 0.

(ii) For an S-proper H-tree T let π(S, T ) be the multiset {ΔS(t) | t ∈ VT
� }. Then T and

T ′ are equivalent if and only if π(S, T ) = π(S, T ′).
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(iii) Let G be a gene tree such that ∅ � L(G) ⊆ L(S). If T = Ψξ(G,S) for some scenario
ξ : LfG → LfS′ , then for every gene node t of T we have

cp(ΔS(t)) ⊆ rd(ΥS[rp(S′, ξ(Γ−1
T (t)))]) ⊆ ΔS(t).

Proof. We start with a proof of (i). First we prove the statement for semi-normal trees.
Observe that a reduction does not change the set of gene nodes in an H-tree. We show, in
addition, that each reduction preserves not only a gene node but also the corresponding
sequence ΔS(t) with the property (4).

We proceed by induction on the length of a sequence of reductions of type II. Sup-
pose, that T is fat. Then, t corresponds to a chain tree C in T (see Section 3.1). Hence,
rp(T, t) = d1d2 . . . dkc1c2 . . . cm, where, d is a sequence of duplication nodes labeled by
L(S) and c is the core path of C. Note that for each i, ΞT (di) = ΞT (c1) = root(S) and
there is no duplication node in c. It follows immediately from Lemma 1 that if C is
a chain tree compatible with a species graph S. Then σS(C) = ΞC[c], where c is the
core path of C that σS(C) = ΞT [c] = rd(ΞT [dc]. Set ΔS(t) to be the unique path (by
Lemma 1) that contains σS(C).

Assume that the statement holds if T is obtained from the fat tree by a sequence of
k reductions of type II. Let T ′ = R(T, v) by a rule R of type II. Then, by the induction
hypothesis, for a gene node t in T , we have the unique sequence ΔS(t) satisfying (4).
Without loss of generality we assume that the redex is in rp(T, t), otherwise rp(T, t) =
rp(T ′, t). Then, t is a leaf in P where P in one of the principal trees of this reduction.
Observe that there is no change in the paths if R = H-CLOST and P is the left principal
tree. In other cases the path that connects v with p = root(P) consists of three nodes:
v, w and p such that a = ΞT (v) = ΞT (w) and b = ΞT (p). Reductions CLOST and
the remaining case of H-CLOST transform ΞT (vwp) = aab into ab. Obviously, (4) is
satisfied with the same sequence ΔSt. Reductions TMOVE and H-TMOVE transform
aab into axb, where x = lcaS(b, c), c = ΞT (q) and q is the root of the second principal
tree. Please note that the middle node after transformation is a duplication. Hence, either
x = b (a trivial case) or x = c � b. In the latter case, x is the start node of a transfer.
Thus, x ∈ ΔS(t) but x � cp(ΔS(t)). Hence, ΞT [rp(T, t)] ⊂ ΞT [rp(T ′, t)] ⊆ ΔS(t). This
completes the proof for semi-normal trees.

To complete the proof for any tree, we need to extend the above proof by induction
on the length of a sequence of reductions of type I in the reversed direction. We start
with a semi-normal tree and a similar induction hypothesis. The proof for the reversed
HGT is similar to TMOVE where the transformation introduces a new transfer node.
We skip the details. Other cases are trivial. This completes the proof of (i) of the present
lemma.

The proof of part (ii) of the lemma follows immediately from the property that re-
ductions preserve π(S, T ) (see the above proof of (i)).

For the proof of (iii) we observe that each gene node t in T corresponds to a gene
leaf g = Γ−1

T (t) and a leaf s′ = ξ(Γ−1
T (t)) in S′. Consider a sequence of applications

of ψ that generates the path rp(T, t), that is, ψ(G(g1),S′(v1)), ψ(G(g2),S′(v2)), . . . ,
ψ(G(gk),S′(vk)), where v1 = root(S′), g1 = root(G), vk = s′, and gk = g. It should
be clear that v ⊆ rp(S′, s′). Such a path in S′ uniquely determines a path �−1

S (s′) in
S. We show that �−1

S (s′) = ΔS(t). For each i, let ti be the root of a subtree of Ψξ(G,S)
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with a pattern ψ(G(gi),S′(vi)). Then, (SQ) ΞT (ti) = ΥS(vi), if vi does not satisfy the
following condition: vi ∈ IntS′ and ξ̂(gi)� a−←vi

γ
→b � a (see N-HT in (3)). Please note

that the right side of (SQ) is an element of rd(ΥS[rp(S′, ξ(Γ−1
T (t)))]), while the left side

defines an element of rd(ΞT [rp(T, t)]). By (i) and the uniqueness, we conclude that (iii)
also holds. ��

Now we can conclude the proof of Theorem 3.

Proof of Theorem 3 (ii) and (iii). For the proof of (ii) let ξ = �S ◦ ΔS ◦ ΓT and
T ′ = Ψξ(G,S). By Lemma 5 (iii), π(S, T ) = π(S, T ′). Then, by Lemma 5 (ii), T and T ′

are equivalent. Finally, by uniqueness of the normal form, T = T ′.
Part (iii) follows from part (ii) if Λ(T ) = L(S). Other cases follow from Lemma 3.

This completes the proof of Theorem 3. ��

We conclude this section by presenting formulas for computing the cost of trees in
normal form. For the gene losses, we define a relation � on the set of nodes of S′. For
s and r in S′, let s � r if and only if (i) s �+ r, and (ii) if s

γ
→ s′, then s′ � r.

Let ξ be a scenario for a gene tree G and a species graph S. For each node g, we
define a non-negative integer lossξ,g as follows: lossξ,g = 0 if g ∈ LfG. Otherwise, if
g ∈ IntG with two children p and q then

lossξ,g =

{
d(ξ̂(g), ξ̂(p)) + 1 if ξ̂(q) = ξ̂(g) � ξ̂(p),
d(ξ̂(g), ξ̂(p)) + d(ξ̂(g), ξ̂(q)) otherwise.

where d(s, s′) = |{t : s �+ t � s′}|.
Also, let lossξ,0 = |{t | t� M(root(G))}|. Now we can give the formula for the number

of gene duplication and gene loss events.

Proposition 1. Let ξ be a scenario for a gene tree G and a species graph S. Then,

(i) The number of duplications in Ψξ(G,S) is given by

|{g | ξ̂(g) = ξ̂(p), where p is a child of g in G}|.

(ii) The number of gene losses in Ψξ(G,S) is given by

lossξ,0 +
∑

g∈G
lossξ,g.

Proof. The proof of (i) follows easily from (DP) in (3).
For the proof of (ii), let T = S′(ξ̂(root(G))). We show that lossξ,0 equals the number

of gene losses in the first applications of ψ until T is reached as the second argument of
ψG,S,ξ; that is, Ψξ(G,S) = (A1

◦, . . . (A
k
◦, ψ(G, T ))∗ . . . )∗[S], where k = lossξ,0. Consider

a path s in S′ starting in root(S′) and terminating in ξ̂(root(G)). For each i < |s|, (i)
if si � ξ̂(root(G)), then either si is a non-transfer node (case (SP-L) in (3)) or si→si+1

(case (HT-L)), otherwise (ii) si is a transfer node and si
−
→si+1 (case (N-HT)). Hence, a

gene loss is present if and only if si � s.
Each node g in G, naturally and uniquely corresponds to a node g∗ in Ψξ(G,S) such

that T (g∗) has patternψ(G(g),S′(ξ̂(g))). For g ∈ IntG with two children p and q, consider
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two paths g∗p1 p2 . . . pk p∗ and g∗q1q2 . . . qmq∗ in Ψξ(G,S). We show that lossξ,g = k+m.
Without loss of generality, we may assume that g = root(G) and ξ̂(g) = root(S′). There
are three cases (1)-(3) dependent on the mappings of g, p and q. (1) ξ̂(p) � ξ̂(g) = ξ̂(q)
- case (DP) in (3). T (q) has pattern ψ(G(q),S), and hence m = 0. For the second child,
we have a sequence of (SP-L), (HT-L) and (N-HT) cases, similarly to (i)-(ii). Hence, the
number of gene losses equals |{t : ξ̂(g) � t�ξ̂(p)}|. From the definition of d, ξ̂(g) � {t :
ξ̂(g) �+ t � ξ̂(p)}. One gene loss is required, when ξ̂(g) � ξ̂(p). Hence, if ξ̂(g) � ξ̂(p),
then lossξ,g = d(ξ̂(g), ξ̂(p)) + 1. Otherwise, lossξ,g = d(ξ̂(g), ξ̂(p)) + d(ξ̂(g), ξ̂(q)). (2)
ξ̂(p) = ξ̂(g) = ξ̂(q) - case (DP). Here k = m = 0. Easy proof is omitted. (3) ξ̂(p) �
ξ̂(g) � ξ̂(q) - case (SP) or (HT). Then, similarly to (2) with child p, the number of gene
losses for p equals |{t : ξ̂(g) � t � ξ̂(p)}|. And hence, d(ξ̂(g), ξ̂(p)) = k. Analogously,
m = d(ξ̂(g), ξ̂(q)). Finally, lossξ,g = d(ξ̂(g), ξ̂(p)) + d(ξ̂(g), ξ̂(p)). ��

The problem of computing the scenario with minimal cost for a given gene tree and a
given species graph can be solved by a dynamic programming algorithm along the lines
presented in [25]. In the experimental section (Section 5) we will apply this adjusted
version of the previously published algorithm to the biological data.

5 HGT Analysis

As an illustration of our model, we present the reconciliation analysis of the hypoth-
esis of HGT from [48]. The authors used several complete genome sequences of the
mosquitoes Ae. aegypti, An. gambiae, Culex quinquefasciatus, and of Wolbachia pip-
ientis strains infecting D. melagonaster (wMel) and Cx. quinquefasciatus (wPip) to
show that the SGS genes (encoding salivary gland surface proteins) had been hori-
zontally transferred between these taxa. The results presented in [48] supported rather
unusual direction of an ancient transfer from mosquito to Wolbachia strains. Here, we
demonstrate the analysis of both directions of the transfer.

HGT from Wolbachia to mosquitoes. This hypothesis is summarized in Fig. 7 and
Fig. 8. Figure 7 depicts a species graph S with one transfer as proposed in [48] and the
phylogeny G of SGS genes. Please note, that there are four normal form H-trees com-
patible with S and G. Here, we present only two embeddings E1 and E2 for the H-trees
in normal form with the lowest reconciliation cost. The embedding E1 is supported by
the analysis from [48]. However, its reconciliation cost is 15 (2 HGTs, 5 gene duplica-
tions and 8 gene losses) is higher than the cost of E2 (14 = 1 + 4 + 9, which is minimal
in the set of all trees in normal form that are compatible with S and G). Thus, in terms
of reconciliation, the scenario represented by E1 is less likely than E2.

The authors of [48] supported also other HGT scenario related to the presence of the
weak edge in G as indicated in Fig. 7. This variant of G, denoted by G′, is depicted in
Fig. 8 together with two best scoring (normal form) embeddings of G′ into S. Now, the
proposed HGT scenario from [48] is E′1 which is in agreement with the reconciliation
cost analysis. Indeed, the embedding E′1 with two HGTs is optimal with cost 10 while
the remaining embeddings require more events. For instance, E2 requires 11 events and
other two scenarios (not presented here) have cost 19.

HGT from Wolbachia to mosquitoes. The opposite direction of the transfer of the
SDS genes was suggested by several authors, for example, [2, 37]. Such a hypothesis
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Aa AAEL004181
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Cq CPIJ007815
Ag AGAP009916
Cq CPIJ017230
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G
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wPip wMel Aa Cq Ag

S E1 E2

Fig. 7. An example of HGT between three mosquitoes (Ae. aegypti=Ae, An. gambiae=Ag, Culex
quinquefasciatus=Cq) and two Wolbachia strains wMel and wPip. G is a gene tree (partially
adopted from [48]) that represents phylogenetic relationships of mosquito SGS genes and their
Wolbachia homologs. The edge marked with a star is short (weak) in G. S is a phylogeny of
mosquitoes [22] and Wolbachia strains with one hypothetical HGT with the direction as suggested
in [48]. E1 and E2 represents two of four possible normal form embeddings of G into S. E2 is
the optimal scenario in terms of the reconciliation cost (that is, the total number of evolutionary
events). Please note that all the trees are rooted. Branch lengths have no meaning in this picture.

wPip WP1346
wMel WD0513
Aa AAEL004181
Cq CPIJ016428
Aa AAEL009992
Aa AAEL009993
Cq CPIJ007815
Ag AGAP009916
Cq CPIJ017230
Aa AAEL003699

G′
E′1 E′2

Fig. 8. G′ - a gene tree obtained from G (see Fig. 7) by changing the topology around weak edge
(indicated in Fig. 7 by a star). E′1 (1 HGT, 4 gene duplications and 5 gene losses) and E′2 (4 gene
duplications and 7 gene losses) - two best scoring embeddings of G′ into S.

wPip wMel Aa Cq Ag

Sr Er E′r

Fig. 9. Sr - a species graph obtained from S (Fig. 7) with the reversed transfer. Er (1 HGT, 4 gene
duplications and 6 gene losses) is the optimal embedding compatible with Sr and G (Fig. 7). E′r
(1 HGT, 3 gene duplications and 4 gene losses) is the optimal embedding compatible with Sr and
G′ (Fig. 8).

is depicted in Fig. 9 with the the species graph Sr. For both gene trees G and G′ from
the previous figures the number of scenarios equals 16. The optimal embedding for G
and Sr is Er with the reconciliation cost 11. Other embeddings compatible with G have
costs at least 15. Similarly, the optimal embedding for G′ and Sr is E′r with the cost 8
while the remaining scenarios compatible with G′ have costs at least 11.

In summary, we conclude that the reconciliation analysis supports the prokaryote-to-
eukaryote HGT as depicted in Figure 8.
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6 Conclusions

This paper contains several theoretical and practical results on the problem of mod-
elling an evolutionary scenario in the presence of macro-evolutionary events such as
HGT, gene duplications, gene losses and speciations. The formal model of such scenar-
ios, called H-trees, was introduced in our previous paper [26]. In the present paper, we
solved a more practical problem of inference, that is, the problem of reconstruction of
such evolutionary scenarios from a given gene tree and a given species graph. In addi-
tion, we answer a number of related questions. For example, we show how to compute
costs or optimal scenarios.

Moreover, our model can be used as a basis for the definition of a reconciled tree
with HGTs. This would be similar to the corresponding definition of reconciled trees in
the duplication-loss model [43]. The point of departure for the new definition would be
our definition of function Ψ (see (3)). For the sake of space we omit the details here.
For example, a reconciled tree with HGTs that corresponds to the mapping given in
Fig. 4f is depicted in Fig. 10.

a b a/a′ c b/b′ a/a′′ a b a/a′ c b/b′ a/a′′

α α

β

α α

β

Fig. 10. Reconciled tree that corresponds to the mapping presented in Fig. 4f

We believe that these results are useful in practical terms and can be applied in testing
empirical hypotheses of HGTs as demonstrated in the last section of this paper.
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Abstract. We present a side by side comparison of Capsules and Clo-
sures, including a proof of bisimilarity, using small-step semantics. A
similar proof was presented in [8], using big-step semantics. However,
while big-step semantics only allow to talk about final results of termi-
nating computations, the use of small-step semantics allows to prove a
stronger bisimilarity involving every step of the computation and thus
also applicable to infinite computations.

1 Introduction

This paper compares the use of Capsules and Closures for a language with both
higher-order and imperative features, and using small-step semantics. Capsules,
introduced in [9], are a simple way of modeling the state of a computation for
languages that are both imperative and functional. The state of a computation
has been studied extensively [1,2,6,7,12–16,20,21]. However capsules intend to be
as simple as possible, using only a single environment, while still capturing lexical
scoping, variable assignment and recursion without heaps, stacks or combinators,
and only using simple types.

The first versions of Lisp implemented dynamic scoping, which did not follow
the semantics of the λ-calculus based on β-reduction. The language Scheme [22]
fixed this by introducing closures, which allow to correctly model static scoping.
The idea behind closures is to keep with each λ–abstraction the environment in
which it was declared, thus forming a closure and allowing to execute the body
of the λ-abstraction in the correct environment.

The language we introduce is both functional and imperative: it has higher-
order functions, but every variable is mutable. This leads to interesting interac-
tions and allows to go further than just enforcing lexical scoping. In particular,
what do we expect the result of an expression like (let x = 1 in let f = λy.x in x :=
2; f 0) to be? Scheme (using set! for :=) and OCaml (using references) answer 2.
Capsules give a rigorous mathematical definition that agrees and conservatively
extends the scoping rules of the λ-calculus. Our semantics of closures also agrees
with this definition, but this requires introducing a level of indirection, with
both a stack of environments and a store, à la ML. Finally, recursive definitions
are often implemented using some sort of backpatching; we build this directly
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into the definition of the language by defining let rec x = d in e as a syntactic
sugar for let x = a in x := d; e, where a is any expression of the appropriate
type.

There is much previous work on reasoning about references and local state;
see [11, 17–19]. State is typically modeled by some form of heap from which
storage locations can be allocated and deallocated [7,15,20,21]. Others have used
game semantics to reason about local state [4,5,10]. Mason and Talcott [12–14]
and Felleisen and Hieb [6] present a semantics based on a heap and storage
locations. A key difference is that Felleisen and Hieb’s semantics is based on
continuations. Finally, Moggi [16] proposed monads, which can be used to model
state and are implemented in Haskell.

This paper is an improvement over [8] and borrows most of its structure, as
we prove the same kind of result. Here we use small-step semantics instead of
big-step semantics, which allows to prove bisimilar even infinite computations.
The language and the notations are the same. The intended semantics of the lan-
guage, both using capsules and closures, is the same as well, even though we have
not formally proven the big-step and the small-step versions equivalent.

This paper is organized as follows. In Sect. 2, we formally introduce a program-
ming language based on the λ-calculus containing both functional and imperative
features. In Sect. 3, we describe two semantics for this language, one based on
capsules and the other on closures. In Sect. 4, we show a very strong correspon-
dence (Theorems 1 and 2, Corollary 1) between the two semantics, showing
that every computation in the semantics of capsules is bisimilar to a computa-
tion in the semantics of closures, and vice-versa. We finish with a discussion in
Sect. 5.

2 Syntax

2.1 Expressions

Expressions Exp = {d, e, a, b, . . .} contain both functional and imperative fea-
tures. There is an unlimited supply of variables x, y, z, . . . of all (simple) types,
as well as constants f, c, . . . for primitive values. () is the only constant of type
unit, and true and false are the only two constants of type bool. In the examples,
0, 1, 2, . . . are predefined constants of type int. In addition, there are functional
features.

– λ-abstraction λx.e

– application (d e),

imperative features

– assignment x := e

– composition d; e
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– conditional if b then d else e

– while loop while b do e,

and syntactic sugars

– let x = d in e (λx.e) d

– let rec x = d in e let x = a in x := d; e

where a is any expression of the appropriate type.

Let Var be the set of variables, Const the set of constants, and λ-Abs the set of
λ-abstractions. Given an expression e, let FV(e) denote the set of free variables
of e. Given a partial function h : Var ⇀ Var such that FV(e) ⊆ domh, let h(e)
be the expression e where every instance of a free variable x ∈ FV(e) has been
replaced by the variable h(x). As usual, given two partial functions g and h,
g ◦ h denotes their composition such that for all x, g ◦ h(x) = g(h(x)). Given a
function h, we write h[x/v] the function such that h[x/v](y) = h(y) for y �= x
and h[x/v](x) = v. Given an expression e, we write e[x/y] the expression e where
all free occurrences of x have been replaced by y.

Throughout the paper, we focus on the features directly involving variables:
variable calls x, λ-abstractions λx.e, applications (d e) where d reduces to a
λ-abstraction, and assignment x := e. Most differences between capsules and
closures arise using these features.

2.2 Types

Types α, β, . . . are built inductively from an unspecified family of base types,
including at least unit and bool, and a type constructor → such that functions
with input type α and return type β have type α → β. All constants c of the
language have a type type(c); by convention, we use c for a constant of a base
type and f for a constant of a functional type. We follow [23] in assuming that
each variable x is associated with a unique type type(x), that could for example
be built into the variable name. Γ is a type environment, a partial function
Var ⇀ Type. As is standard, we write Γ, x : α for the typing environment Γ
where x has been bound or rebound to α. The typing rules are standard:

Γ � c : α if type(c) = α Γ, x : α � x : α
type(x) = α Γ, x : α � e : β

Γ � λx.e : α→ β

Γ � d : α→ β Γ � e : α

Γ � (d e) : β

Γ � x : α Γ � e : α

Γ � x := e : unit

Γ � d : unit Γ � e : α

Γ � d; e : α

Γ � b : bool Γ � d : α Γ � e : α

Γ � if b then d else e : α

Γ � b : bool Γ � e : unit

Γ � while b do e : unit
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3 Semantics

We present two different semantics that have a strong correspondence:

– The semantics on capsules is a simplified version of the semantics on closure
structures introduced in [3]. It has previously been described in [9];

– The semantics on closures is the semantics usually used and taught for func-
tional languages. A level of indirection for variables has been added to sup-
port imperative features, à la ML. Developing a small-step semantics for
closures ended up being a little bit more complicated than expected.

From now on all the expressions we consider are supposed well-typed with the
rules of Sect. 2.2.

3.1 Capsules

Definitions. An irreducible term is either a constant or a λ-abstraction. A
capsule environment γ is a partial function from variables to irreducible terms,
such that

∀x ∈ dom γ, FV(γ(x)) ⊆ dom γ.

Let i, j, k, . . . denote irreducible terms and γ, δ, ζ, η, . . . capsule environments.
Let Irred = Const + λ-Abs be the set of irreducible terms. Thus we have:

γ : Var⇀ Irred Irred = Const + λ-Abs

Semantics. A capsule is a pair 〈e, γ〉, such that FV(e) ⊆ dom γ.

Let us define a small step semantics where the operator →ca relates capsules.
The semantics of features directly involving variables is given by:

〈x, γ〉 →ca 〈γ(x), γ〉 〈y := i, γ〉 →ca 〈(), γ[y/i]〉
〈(λx.b) i, γ〉 →ca 〈b[x/y], γ[y/i]〉 (y fresh)

and the remaining semantics is:

〈f c, γ〉 →ca 〈f(c), γ〉 〈(); e, γ〉 →ca 〈e, γ〉
〈if true then d else e, γ〉 →ca 〈d, γ〉 〈if false then d else e, γ〉 →ca 〈e, γ〉

〈while b do e, γ〉 →ca 〈if b then (e;while b do e) else (), γ〉
Evaluation contexts C are defined by:

C ::= [ · ] | C e | i C | x := C | C; e | if C then d else e



110 J.-B. Jeannin

where each evaluation context C[ · ] generates a rule:

〈d, γ〉 →ca 〈e, δ〉
〈C[d], γ〉 →ca 〈C[e], δ〉

The well-typed final capsules, i.e. capsules that cannot take a small step, are
exactly the capsules 〈i, γ〉 for any irreducible term i.

As usual, we introduce →∗
ca as the reflexive transitive closure of →ca.

Examples. The following examples show that lexical scoping and recursion are
handled.

Example 1. (let x = 1 in let f = λy.x in let x = 2 in f 0)→∗
ca 1.

Proof

〈 let x = 1 in let f = λy.x in let x = 2 in f 0, [ ] 〉
→ca 〈 let f = λy.x′ in let x = 2 in f 0, [x′ = 1] 〉
→ca 〈 let x = 2 in f ′ 0, [x′ = 1, f ′ = λy.x′] 〉
→ca 〈 f ′ 0, [x′ = 1, f ′ = λy.x′, x′′ = 2] 〉
→ca 〈 (λy.x′) 0, [x′ = 1, f ′ = λy.x′, x′′ = 2] 〉
→ca 〈 x′, [x′ = 1, f ′ = λy.x′, x′′ = 2, y′ = 0] 〉
→ca 〈 1, [x′ = 1, f ′ = λy.x′, x′′ = 2, y′ = 0] 〉

Example 2. (let x = 1 in let f = λy.x in x := 2; f 0)→∗
ca 2.

Proof

〈 let x = 1 in let f = λy.x in x := 2; f 0, [ ] 〉
→ca 〈 let f = λy.x′ in x′ := 2; f 0, [x′ = 1] 〉
→ca 〈 x′ := 2; f ′ 0, [x′ = 1, f ′ = λy.x′] 〉
→∗

ca 〈 f ′ 0, [x′ = 2, f ′ = λy.x′] 〉
→ca 〈 (λy.x′) 0, [x′ = 2, f ′ = λy.x′] 〉
→ca 〈 x′, [x′ = 2, f ′ = λy.x′, y′ = 0] 〉
→ca 〈 2, [x′ = 2, f ′ = λy.x′, y′ = 0] 〉

Example 3. (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3)→∗
ca 6.
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Proof. In this example e stands for λn.if n = 0 then 1 else f(n− 1)× n.

〈 let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3, [ ] 〉
→∗

ca 〈 f 3, [f = λn.if n = 0 then 1 else f(n− 1)× n] 〉
→∗

ca 〈 if n1 = 0 then 1 else f(n1 − 1)× n1, [f = e, n1 = 3] 〉
→∗

ca 〈 (f 2)× n1, [f = e, n1 = 3] 〉
→∗

ca 〈 (if n2 = 0 then 1 else n2 × f(n2 − 1))× n1, [f = e, n1 = 3, n2 = 2] 〉
→∗

ca 〈 (f 1)× n2 × n1, [f = e, n1 = 3, n2 = 2] 〉
→∗

ca 〈 (if n3 = 0 then 1 else n3 × f(n3 − 1))× n2 × n1,

[f = e, n1 = 3, n2 = 2, n3 = 1] 〉
→∗

ca 〈 (f 0)× n3 × n2 × n1, [f = e, n1 = 3, n2 = 2, n3 = 3] 〉
→∗

ca 〈 (if n4 = 0 then 1 else n4 × f(n4 − 1))× n3 × n2 × n1,

[f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉
→∗

ca 〈 1× n3 × n2 × n1, [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉
→∗

ca 〈 6, [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0] 〉

3.2 Closures

Definitions. Closures were introduced in the language Scheme [22]. We present
a version of them using a level of indirection, allowing us to handle mutable
variables.

There is an unlimited number of locations �, �1, �2 . . .; locations can be thought
of as addresses in memory. An environment is a partial function from variables to
locations. A closure is defined as a pair {λx.e, σ} such that FV(λx.e) ⊆ domσ,
where λx.e is a λ-abstraction and σ is an environment that is used to interpret
the free variables of λx.e. A value is either a constant or a closure. Values for
closures play the same role as irreducible terms for capsules. A store (or memory)
is a partial function from locations to values.

Let u, v, w, . . . denote values, σ, τ, . . . environments and μ, ν, ξ, χ, . . . stores.
Let Val be the set of values, Loc the set of locations and Cl the set of closures.
Thus we have:

σ : Var⇀ Loc μ : Loc⇀ Val Val = Const + Cl

The interaction of small-step semantics and closures leads to using stacks of en-
vironments: when entering the body of a function, the environment coming with
its closure is pushed; and when leaving this body, it is popped. Let Σ,Π, . . .
denote stacks of environments. Let us write [σ] the stack of environments con-
taining only the element σ, as to not confuse it with the single environment σ.
σ :: τ represents the stack containing σ at the top of the stack and τ at its
bottom. σ :: Σ represents the stack Σ with σ added on top of it; and Σ :: σ
represents Σ with σ added at its bottom. We define hd(Σ) = σ and tl(Σ) = Π
whenever Σ = σ :: Π .
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To define a small-step semantics of closures, we need to represent all the dif-
ferent shapes an expression can take throughout computation, until it becomes a
value. State expressions StExp = {s, t, . . .} allow to do this. Of course, expressions
and values are state expressions, but some state expressions are neither.

Exp ⊆ StExp Val ⊆ StExp

A state expression can be:

– an expression e; this includes constants c;

– a closure {λx.a, σ};
– an evaluation expression followed by a pop indicator �, as in s �; when

entering the body of a function, a new environment needs to be pushed
on the stack of environments; this environment needs to be popped when
leaving the body of the function; one way to know when this happens is to
keep track of the end of the body with �;

– an evaluation expression applied to an expression, s e;

– a value applied to an evaluation expression, v s;

– an assignment, x := s;

– a composition s; e;

– an if statement if s then d else e.

We extend the notion of free variables to an evaluation expression in a natu-
ral, syntactic way: for a well-formed closure {λx.a, σ} with FV(λx.a) ⊆ domσ,
FV({λx.a, σ}) is the empty set; and FV(s �) = FV(s).

Stacks of environments, along with the introduction of closures and of the pop
indicator �, are a convenient way to model in which environment each variable
should be looked up. Intuitively, any free variable in a λ-abstraction of a closure
should be interpreted in the environment coming with this closure. Because of
the definition of state expressions, the pop indicators all are inside each other.
The variables inside the deepest pop indicator are interpreted in the environment
on top the stack; the variables inside the second deepest but outside the deepest
pop indicator are interpreted in the second environment from the top of the
stack, and so on. The variables outside of any pop indicator are interpreted in
the environment at the bottom of the stack. A precise account of this idea will
be given in Sect. 4.1 with the definition of h ◦Σ.

Semantics. A state is a triple (s, Σ, μ).

FV(s) ⊆ dom (hdΣ) ∀σ ∈ Σ, codomσ ⊆ domμ

∀{λx.a, τ} ∈ codomμ, FV(λx.a) ⊆ dom τ ∧ codom τ ⊆ domμ
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When evaluating an expression e, we start with the initial state (e, [σ], μ) where
σ and μ are both empty mappings. Let us define a small step semantics where
the operator →cl relates valid states to valid results. The semantics of features
directly involving variables is given by:

(x, [σ], μ)→cl (μ(σ(x)), [σ], μ) (λx.a, [σ], μ)→cl ({λx.a, σ}, [σ], μ)

({λx.a, σ} v, [τ ], μ)→cl (a �, σ[x/�] :: τ, μ[�/v]) (� fresh)

(v �, σ :: τ, μ)→cl (v, [τ ], μ) (x := v, [σ], μ)→cl ((), [σ], μ[σ(x)/v])

and the remaining semantics is:

(f c, [σ], μ)→cl (f(c), [σ], μ) ((); e, [σ], μ)→cl (e, [σ], μ)

(if true then d else e, [σ], μ)→cl (d, [σ], μ)

(if false then d else e, [σ], μ)→cl (e, [σ], μ)

(while b do e, [σ], μ)→cl (if b then (e;while b do e) else (), [σ], μ)

Evaluation contexts C are defined by:

C ::= [ · ] | C e | v C | x := C | C; e | if C then d else e

where each evaluation context C[ · ] generates a rule:

(s, Σ, μ)→cl (t, Π, ν)

(C[s], Σ, μ)→cl (C[t], Π, ν)

One more rule is needed to be able to evaluate under a pop indicator �:

(s, Σ, μ)→cl (t, Π, ν)

(s �, Σ :: σ, μ)→cl (t �, Π :: σ, ν)

Note the similarity between the last two rules, including the definition of evalua-
tion contexts, and the inductive definition of state environments. This is not by
chance: the innermost state expression, if not a value, is always the one which
will be evaluated next.

The final states, i.e., the states that cannot take a small step, are the (v,Σ, μ)
for any value v.

As usual, we introduce →∗
cl as the reflexive transitive closure of →cl.

Properties. Some properties of this semantics can be easily proved:

– In an evaluation expression s, all the pop indicators � are inside each other;
the deepest one is inside all the others, and so on.

– If starting from an initial state, the number of elements on the environment
stack Σ is always one more than the number of pop indicators � in s.

– if Σ →cl Π then either Σ = Π or Σ = σ :: Π or σ :: Σ = Π for some σ.
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Examples. To illustrate the above semantics, we now show the evaluation of
the examples of section 3.1 using closures.

Example 4. (let x = 1 in let f = λy.x in let x = 2 in f 0)→∗
cl 1.

Proof

〈 let x = 1 in let f = λy.x in let x = 2 in f 0, [ ], [ ] 〉
→cl 〈 {λx.let f = λy.x in let x = 2 in f 0, [ ]} 1, [ ], [ ] 〉
→cl 〈 let f = λy.x in let x = 2 in f 0 �, [x = �1] :: [ ], [�1 = 1] 〉
→cl 〈 {λf.let x = 2 in f 0, [x = �1]} λy.x �, [x = �1] :: [ ], [�1 = 1] 〉
→cl 〈 {λf.let x = 2 in f 0, [x = �1]} {λy.x, [x = �1]} �, [x = �1] :: [ ],

[�1 = 1] 〉
→cl 〈 let x = 2 in f 0 � �, [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}] 〉
→cl 〈 {λx.f 0, [x = �1, f = �2]} 2 � �, [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}] 〉
→cl 〈 f 0 � � �, [f = �2, x = �3] :: [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2] 〉
→cl 〈 {λy.x, [x = �1]} 0 � � �,

[f = �2, x = �3] :: [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2] 〉
→cl 〈 x � � � �,

[x = �1, y = �4] :: [f = �2, x = �3] :: [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2, �4 = 0] 〉
→cl 〈 1 � � � �,

[x = �1, y = �4] :: [f = �2, x = �3] :: [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2, �4 = 0] 〉
→cl 〈 1 � � �, [f = �2, x = �3] :: [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2, �4 = 0] 〉
→cl 〈 1 � �, [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2, �4 = 0] 〉
→cl 〈 1 �, [x = �1] :: [ ], [�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2, �4 = 0] 〉
→cl 〈 1, [ ], [�1 = 1, �2 = {λy.x, [x = �1]}, �3 = 2, �4 = 0] 〉
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Example 5. (let x = 1 in let f = λy.x in x := 2; f 0)→∗
cl 2.

Proof

〈 let x = 1 in let f = λy.x in x := 2; f 0, [ ], [ ] 〉
→cl 〈 {λx.let f = λy.x in x := 2; f 0, [ ]} 1, [ ], [ ] 〉
→cl 〈 let f = λy.x in x := 2; f 0 �, [x = �1] :: [ ], [�1 = 1] 〉
→cl 〈 {λf.x := 2; f 0, [x = �1]} λy.x �, [x = �1] :: [ ], [�1 = 1] 〉
→cl 〈 {λf.x := 2; f 0, [x = �1]} {λy.x, [x = �1]} �, [x = �1] :: [ ], [�1 = 1] 〉
→cl 〈 x := 2; f 0 � �, [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 1, �2 = {λy.x, [x = �1]}] 〉
→∗

cl 〈 f 0 � �, [x = �1, f = �2] :: [x = �1] :: [ ], [�1 = 2, �2 = {λy.x, [x = �1]}] 〉
→cl 〈 {λy.x, [x = �1]} 0 � �, [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 2, �2 = {λy.x, [x = �1]}] 〉
→cl 〈 x � � �, [x = �1, y = �3] :: [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 2, �2 = {λy.x, [x = �1]}, �3 = 0] 〉
→cl 〈 2 � � �, [x = �1, y = �3] :: [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 2, �2 = {λy.x, [x = �1]}, �3 = 0] 〉
→cl 〈 2 � �, [x = �1, f = �2] :: [x = �1] :: [ ],

[�1 = 2, �2 = {λy.x, [x = �1]}, �3 = 0] 〉
→cl 〈 2 �, [x = �1] :: [ ], [�1 = 2, �2 = {λy.x, [x = �1]}, �3 = 0] 〉
→cl 〈 2, [ ], [�1 = 2, �2 = {λy.x, [x = �1]}, �3 = 0] 〉

Example 6. (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3)→∗
cl 6.

Proof. This example is particularly interesting as it shows how nested � allow
to interpret the same variable in different scopes. In all the example e stands for
{λn.if n = 0 then 1 else f(n− 1)× n, [f = �1]}, and d stands for {λn.n, [ ]}, a
dummy value used when creating the recursive function f .
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〈 let rec f = λn.if n = 0 then 1 else f(n− 1) × n in f 3, [ ], [ ] 〉
→∗

cl 〈 f := λn.if n = 0 then 1 else f(n− 1) × n; f 3 �, [f = �1] :: [ ], [�1 = d] 〉
→∗

cl 〈 f 3 �, [f = �1] :: [ ], [�1 = e] 〉
→∗

cl 〈 if n = 0 then 1 else f(n− 1)× n � �, [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3] 〉
→∗

cl 〈 (f 2) × n � �, [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3] 〉
→∗

cl 〈 (if n = 0 then 1 else n× f(n− 1) �)× n � �,
[f = �1, n = �3] :: [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3, �3 = 2] 〉
→∗

cl 〈 ((f 1) × n �)× n � �, [f = �1, n = �3] :: [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3, �3 = 2] 〉
→∗

cl 〈 ((if n = 0 then 1 else n× f(n− 1) �)× n �)× n � �,
[f = �1, n = �4] :: [f = �1, n = �3] :: [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3, �3 = 2, �4 = 1] 〉
→∗

cl 〈 (((f 0)× n �)× n �)× n � �,
[f = �1, n = �4] :: [f = �1, n = �3] :: [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3, �3 = 2, �4 = 1] 〉
→∗

cl 〈 (((if n = 0 then 1 else n× f(n− 1) �)× n �)× n �)× n � �,
[f = �1, n = �5] :: [f = �1, n = �4] :: [f = �1, n = �3] :: [f = �1, n = �2] ::

[f = �1] :: [ ], [�1 = e, �2 = 3, �3 = 2, �4 = 1, �5 = 0] 〉
→cl 〈 (((if 0 = 0 then 1 else n× f(n− 1) �)× n �)× n �)× n � �,

[f = �1, n = �5] :: [f = �1, n = �4] :: [f = �1, n = �3] :: [f = �1, n = �2] ::

[f = �1] :: [ ], [�1 = e, �2 = 3, �3 = 2, �4 = 1, �5 = 0] 〉
→cl 〈 (((1 �)× n �)× n �)× n � �,

[f = �1, n = �5] :: [f = �1, n = �4] :: [f = �1, n = �3] :: [f = �1, n = �2] ::

[f = �1] :: [ ], [�1 = e, �2 = 3, �3 = 2, �4 = 1, �5 = 0] 〉
→cl 〈 ((1× n �)× n �)× n � �,

[f = �1, n = �4] :: [f = �1, n = �3] :: [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3, �3 = 2, �4 = 1, �5 = 0] 〉
→∗

cl 〈 ((1× 1)× n �)× n � �, [f = �1, n = �3] :: [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3, �3 = 2, �4 = 1, �5 = 0] 〉
→∗

cl 〈 ((1× 1)× 2)× n � �, [f = �1, n = �2] :: [f = �1] :: [ ],

[�1 = e, �2 = 3, �3 = 2, �4 = 1, �5 = 0] 〉
→∗

cl 〈 6, [ ], [�1 = e, �2 = 3, �3 = 2, �4 = 1, �5 = 0] 〉
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4 Equivalence of the Small-Step Semantics

4.1 Definitions

There is a very strong correspondence between the semantics of closures and
capsules. To give a precise account of this correspondence, we introduce an in-
jective partial function h : Loc⇀ Var with which we define three relations. Each
relation is between an element of the semantics of closures and an element of
the semantics of capsules that play similar roles:

– v
h→ i between values and irreducible terms;

– μ
h→ γ between stores and capsule environments;

– (s, Σ, μ)
h∼ 〈e, γ〉 between states and capsules;

One thing to notice is that nothing in the semantics of capsules plays the same
role as the stack of environments Σ in the semantics of closures: capsule envi-
ronments γ relate to memories μ, and the stack of environments Σ has been
simplified. Let us now give precise definitions of those relations.

Definition 1. Given a value v and an irreducible term i, we say that h trans-

forms v into i, where h is an injective map h : Loc ⇀ Var, and we write v
h→ i,

if and only if:
– v = i when v ∈ Const, or
– codom τ ⊆ domh and (h ◦ τ)(λx.a) = i when v = {λx.a, τ} ∈ Cl

Definition 2. Given a store μ and a capsule environment γ, we say that h
transforms μ into γ, where h is an injective map h : Loc ⇀ Var, and we write

μ
h→ γ, if and only if:

domh = domμ h(domμ) = dom γ

∀� ∈ domμ, μ(�)
h→ γ(h(�))

We are now ready to give a precise account of the interpretation of variables in
state environments, as described in Sect. 3.2. Given a map h : Loc⇀ Var and a
stack of environments Σ, let us inductively define the operator h ◦Σ : StExp→
Exp as:

h ◦ (Σ :: σ)(e) = h ◦ σ(e)

h ◦Σ({λx.a, σ}) = σ(λx.a)

h ◦ (Σ :: σ)(s �) = h ◦Σ(s)

h ◦Σ(s e) = (h ◦Σ(s)) (h ◦Σ(e))

h ◦Σ(v s) = (h ◦Σ(v)) (h ◦Σ(s))

h ◦ (Σ :: σ)(x := s) = (h ◦ σ(x)) := h ◦ (Σ :: σ)(s)

h ◦Σ(s; e) = h ◦Σ(s);h ◦Σ(e)

h ◦Σ(if s then d else e) = if h ◦Σ(s) then h ◦Σ(d) else h ◦Σ(e)
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Definition 3. Given a state (s, Σ, μ) and a capsule 〈e, γ〉, both valid, we say
that they are bisimilar under h, where h is an injective map h : Loc⇀ Var, and

we write (s, Σ, μ)
h∼ 〈e, γ〉, if and only if

h ◦Σ(s) = e μ
h→ γ

4.2 Soundness of Capsules with Respect to Closures

Now that we know how to relate each element of both semantics, Theorem 1
shows that any derivation using closures mirrors zero or more derivation steps
using capsules, and Theorem 2 shows that any derivation step using capsules
mirrors zero or more derivation steps using closures. Combined, they give rise
to Corollary 1, which shows that any derivation using capsules is mirrored by a
derivation using closures, and vice-versa.

Theorem 1. If (s, Σ, μ)
h∼ 〈d, γ〉 and (s, Σ, μ)→cl (t, Π, ν), then there exists

e, δ such that

〈d, γ〉 →∗
ca 〈e, δ〉 (t, Π, ν)

g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Theorem 2. If (s, Σ, μ)
h∼ 〈d, γ〉 and 〈d, γ〉 →ca 〈e, δ〉, then there exists t,Π, ν

such that

(s, Σ, μ)→∗
cl (t, Π, ν) (t, Π, ν)

g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Corollary 1. If (s, Σ, μ)
h∼ 〈d, γ〉 then

– if (s, Σ, μ)→∗
cl (t, Π, ν) then there exists e, δ such that

〈d, γ〉 →∗
ca 〈e, δ〉 (t, Π, ν)

g∼ 〈e, δ〉

– if 〈d, γ〉 →∗
ca 〈e, δ〉 then there exists t,Π, ν such that

(s, Σ, μ)→∗
cl (t, Π, ν) (t, Π, ν)

g∼ 〈e, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Proof of Corollary 1. We use standard arguments on weak bisimilarity. The first
part is proved by recurrence on the number of steps of the derivation of (s, Σ, μ)→∗

cl

(t, Π, ν) and application of Theorem 1. Similarly, the second part is by recurrence
on the number of steps of 〈d, γ〉 →∗

ca 〈e, δ〉 and application of Theorem 2. �
Proof of Theorem 1. We proceed by induction on the derivation of (s, Σ, μ)→cl

(t, Π, ν). In the interest of space, we only show the most interesting cases of
the induction in the main text: variable call x, λ-abstraction λx.e, function
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application of a closure {λx.a, σ} v, popping from the environment stack v �,
variable assignment x := e, contexts C[s] and computing with the pop indicator
s �. The other cases, function application of a constant function f c, composition
d; e, if conditional if b then d else e and while loop while b do e, are straightforward
inductive arguments.

Variable Call. If s = x for some variable x and Σ = [σ] then d = (h ◦ σ)(s) = y
with y the variable such that y = (h ◦ σ)(x).

By definition of →cl, (t, Π, ν) = (μ(σ(x)), [σ], μ), and by definition of →ca,

〈d, γ〉 = 〈y, γ〉 →ca 〈γ(y), γ〉. Moreover μ
h→ γ, therefore by definition of

h→,

μ(σ(x))
h→ γ(h(σ(x))) = γ(y). Therefore, with g = h, (t, Π, ν) = (μ(σ(x)), [σ],

)μ
g∼ 〈γ(y), γ〉 which completes this case.

λ-Abstraction. If s = λx.a and Σ = [σ], then d = (h ◦ σ)(λx.a) which is a term
α-equivalent to s, so d = λx.b for some b. Indeed, the variable x does not change
from s to d since only the free variables of s are affected by h ◦ σ.

By definition of→cl, (t, Π, ν) = ({λx.a, σ}, [σ], μ), and by reflexivity of→∗
ca,

〈d, γ〉 = 〈λx.b, γ〉 →∗
ca 〈λx.b, γ〉. But codomσ ⊆ domh and λx.b = (h◦σ)(λx.a),

therefore {λx.a, σ} h→ λx.b. Moreover we know μ
h→ γ and with g = h, we get

({λx.a, σ}, [σ], μ)
g∼ 〈λx.b, γ〉 which completes this case.

Function Application of a Closure. If s = {λx.a, σ} v and Σ = [τ ], then (h ◦
Σ)({λx.a, σ}) = (h ◦ σ)(λx.a) is a λx.b for some expression b, and (h ◦Σ)(v) is
some irreducible term i. Since d = (h ◦Σ)(s), d = (λx.b) i.

By definition of →cl, (t, Π, ν) = (a �, σ[x/�] :: τ, μ[�/v]) with � fresh, and
by definition of →ca, 〈d, γ〉 →ca 〈b[x/y], γ[y/i]〉, with y fresh. Let g : Loc⇀ Var
such that:

g : domh ∪ {�} → codom g ∪ {y}
�h ∈ domh �→ h(�h)

� �→ y

Lemma 1. (a, [σ[x/�]], μ[�/v])
g∼ 〈b[x/y], γ[y/i]〉.

Proof. First of all, λx.b = (h ◦ σ)(λx.a), g is an extension of h and FV(λx.a) ⊆
domh, therefore λx.b = (g ◦ σ)(λx.a). Now b[x/y] = ((g ◦ σ)[x/y])(a) = (g ◦
σ[x/�])(λx.a) since g(�) = y.

We further need to argue that μ[�/v]
g→ γ[y/i]. We already know that dom g =

domh ∪ {�} = domμ ∪ {�} = domμ[�/v], and g(domμ[�/v]) = codomh ∪
{y} = dom γ[y/i]. Let �′ ∈ domμ[�/v]. If �′ ∈ domμ, then μ[�/v](�′) = μ(�′) h→
γ(g(�′)) = γ[y/i](g(�′)) by injectivity of g, therefore μ[�/v](�′)

g→ γ[y/i](g(�′)).
Otherwise, �′ = � and then μ[�/v](�) = v

h→ i = γ[y/i](y) = γ[y/i](g(�)),

therefore since g is an extension of h, μ[�/v](�)
g→ γ[y/i](g(�)). This completes

the proof of the lemma.
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Using lemma 1, we get that (g ◦ [σ[x/�]])(a) = b[x/y] and μ[�/v]
g→ γ[y/i]. But

g ◦ (σ[x/�] :: τ)(a �) = (g ◦ [σ[x/�]])(a), therefore (a �, σ[x/�] :: τ, μ[�/v])
g→

γ[y/i], which completes this case.

Popping from the environment stack. If s = v � for some value v and Σ = σ :: τ ,
then d = (h ◦ Σ)(v �) = (h ◦ Σ)(v), which is an irreducible term i such that

v
h→ i, since:

– if v is a constant c, i = (h ◦Σ)(c) = c;

– if v is a closure {λx.a, σ′}, i = (h ◦ Σ)({λx.a, σ′}) = (h ◦ σ′)(λx.a) and
codomσ′ ⊆ domh.

By definition of →cl, (t, Π, ν) = (v, [τ ], μ), and by reflexivity of →∗
ca, 〈d, γ〉 =

〈i, γ〉 →∗
ca 〈i, γ〉. But i = (h ◦ Σ(v)) does not depend on Σ, therefore i =

(h ◦ [τ ])(v). Moreover we know μ
h→ γ and with g = h, we get (v, [τ ], μ)

g∼ 〈i, γ〉
which completes this case.

Variable Assignment. If s = (x := v) for some variable x and value v and
Σ = [σ], then d = (h ◦ Σ)(x := v) = (y := i) with y a variable such that

y = (h ◦ σ)(x) and i = (h ◦Σ)(v). Therefore (v, σ, μ)
h∼ 〈i, γ〉.

By definition of→cl, (s, Π, ν) = ((), [σ], μ[σ(x)/v]), and by definition of→ca,
〈d, γ〉 = 〈y := i, γ〉 = 〈(), γ[y/i]〉. The following lemma completes this case.

Lemma 2. ((), σ, μ[σ(x)/v])
h∼ 〈(), γ[y/i]〉.

Proof. The domain conditions are fulfilled since (v, σ, μ)
h∼ 〈i, γ〉, domμ =

domμ[σ(x)/v] and dom γ = dom γ[y/i]. Let � ∈ domμ[σ(x)/v] = domμ. If � =

σ(x) then μ[σ(x)/v](�) = v
h∼ i = γ[y/i](y) = γ[y/i](h(�)) since h(�) = (h ◦

σ)(x) = (h ◦ σ)(x) = y. Otherwise μ[σ(x)/v](�) = μ(�)
h∼ γ(h(�)) = γ[y/i](h(�))

using that h is injective and h is an extension of h. Finally ()
h→ (), which

completes the proof of the lemma.

Contexts. If s = C[s1] for some context C such that (s1, Σ, μ) →cl (t1, Π, ν),

then by definition of →cl, t = C[t1]. By definition of
h∼ there exists d1 such

that d = C[d1]. By induction hypothesis there exists e1, δ such that 〈d1, γ〉 →∗
ca

〈e1, δ〉 and (t1, Π, ν)
g∼ 〈e1, δ〉 for some g extension of h. By definition of →ca,

〈C[d1], γ〉 →∗
ca 〈C[e1], δ〉. By induction on the structure of C, and using the fact

that the context C cannot contain any �, we can then prove that (C[t1], Π, ν)
g∼

〈C[e1], δ〉, which completes this case.

Computing under the Pop Indicator �. If s = s1 � for s1 not a value, such that
(s1, Σ, μ) →cl (t1, Π, ν), and Σ = Σ′ :: σ, then by definition of →cl, t = t1 �
and Π = Π ′ :: σ for some Π ′. (s1 �, Σ′ :: σ, μ)

h∼ 〈d, γ〉, therefore (s1, Σ
′, μ)

h∼
〈d, γ〉. By induction hypothesis there exists e, δ such that 〈d, γ〉 →∗

ca 〈e, δ〉 and
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(t1, Π, ν)
h∼ 〈e, δ〉. Now this proves that (t1 �, Π ′ :: σ, ν)

h∼ 〈e, δ〉, which
completes this case.

�
Proof of Theorem 2. We proceed similarly as for the proof of Theorem 1, by
induction on the derivation of 〈d, γ〉 →ca 〈e, δ〉. We do not detail any case here.
The cases for variable call, function application of a λ-term, variable assignment,
and contexts are symmetric to the ones seen in the proof of Theorem 1. The
case for function application of a constant function, composition, if conditional
and while loop are straightforward inductive arguments. Finally, this Theorem
does not need cases for λ-abstractions, popping from the environment stack or
computing with the pop indicator, as no rule in →ca applies to those. �

5 Discussion

5.1 Capsules and Closures: A Strong Correspondence

Corollary 1 shows that capsules and closures are very strongly related. Not only
there is a derivation based on capsules for every derivation based on closures,
but these two derivations mirror each other. The computations are completely
bisimilar, even though definining computations for capsules is simpler.

5.2 Capsules Allow to Suppress the Stack of Environments Σ

When using closures, a state is a triple (s, Σ, μ) whereas when using capsules, it
is just a capsule 〈e, γ〉. If they are bisimilar under h, it means that (h◦Σ)(d) = e

and μ
h→ γ. Capsules eliminate the need for the stack of environments Σ and

thus suppress the indirection in closures that was needed to handle imperative
features. Their small-step semantics also does not need any stack of environments
of any sort, making the state of computation much simpler. Finally, we originally
created the capsule environment γ to replace the (closure) environments of Σ.
However, it is remarkable that γ is much closer to the store μ, while at the same
time eliminating the need for Σ.
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Nuprl as Logical Framework

for Automating Proofs in Category Theory

Christoph Kreitz
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Abstract. We describe the construction of a semi-automated proof sys-
tem for elementary category theory using the Nuprl proof development
system as logical framework. We have used Nuprl’s display mechanism
to implement the basic vocabulary and Nuprl’s rule compiler to imple-
mented a first-order proof calculus for reasoning about categories, func-
tors and natural transformations. To automate proofs we have formalized
both standard techniques from automated theorem proving and reason-
ing patterns that are specific to category theory and used Nuprl’s tactic
mechanism for the actual implementation. We illustrate our approach by
automating proofs of natural isomorphisms between categories.

1 Introduction

Category theory [EM45] is a common framework for expressing abstract prop-
erties of mathematical structures that occur in many areas of mathematics and
computer science. Abstract notions such as objects, morphisms, composition,
identities, products, functors, transformations, duality, and isomorphisms are
common to areas like set theory, logic, algebra, topology, semantics of program-
ming languages, or formal software specification and development. The beauty
of category theory is that it allows one to be completely precise about such con-
cepts and that many algebraic constructions become exceedingly elegant at this
level of abstraction. Diagrams can be used to illustrate essential insights and
often make it unnecessary to provide further details of a proof, as these may be
obtained entirely by standard patterns of reasoning.

However, since category theory is considerably more abstract than many other
branches of mathematics, it becomes almost impossible to verify the details of
such a proof. Readers frequently have to accept “obvious” assertions on faith, as
complete proofs based on precise definitions often involve an enormous number of
low-level details that must be checked. Furthermore, the high level of abstraction
forces one to work in an atmosphere in which much of the intuition has been
stripped away. As a result, the verification often becomes a matter of pure symbol
manipulation, an area in which humans easily make mistakes.

On the other hand, proofs that rely on standard patterns of reasoning and
symbol manipulation lend themselves well to automation. Providing such an au-
tomation serves several purposes. It enables users to generate completely formal
proofs without having to go through all the details themselves, thus providing
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assurance that the statement is in fact true. It allows users to inspect details of
a proof and get a better grasp of the standard patterns of reasoning in elemen-
tary category theory. It also shows that the proofs that many authors do not
bother to provide actually may contain a tremendous amount of hidden detail
and possibly even preconditions that the author might have taken for granted or
overlooked entirely. Finally, it demonstrates that a proof is indeed trivial from an
intellectual point of view, because it could be found automatically by a machine.

To provide a foundation for automating basic category theory reasoning Kozen
[Koz04] presents a first-order axiomatization of elementary category theory
and illustrates its use by giving a formal proof that the functor categories
Fun[C×D,E] and Fun[C,Fun[D,E]] are naturally isomorphic. Although the
proof of this theorem omits many low-level details such as equality reasoning
and simple first-order arguments, it is extremely long and required many hours
of careful work to complete. To make sure that every detail of a proof can be
validated it is necessary to implement the proof calculus and to develop proof
strategies that support the automated construction of proofs by capturing the
general patterns of reasoning used in hand-constructed proofs.

As platform for the implementation of Kozen’s calculus we have selected
the Nuprl system [CA+86]. Nuprl is a proof and programming environment
for the interactive development of formalized mathematical knowledge as well
as for the synthesis, verification, and optimization of software. Nuprl’s current
architecture [AC+00, Kre02, AB+05] is the product of many evolutions aimed at
providing a theorem proving environment as rich and robust as its type theory.
The resulting implementation composes a set of communicated processes, cen-
tered around a common knowledge base, called the library. The library contains
definition objects, theorems, inference rules, and meta-level code (e.g. tactics),
and serves as a transaction broker for the other processes. Those processes in-
clude user interfaces (editors), inference engines (refiners) and mechanisms for
extracting programs from proofs, rewrite engines (evaluators), and translators.
Translators between the formal knowledge stored in the library and, for instance,
programming languages like Java or Ocaml [Kre04, KHH98] allow the formal rea-
soning tools to supplement real-world software from various domains and thus
provide a logical programming environment for the respective languages.

While Nuprl was originally developed as theorem prover for Computational
Type Theory [Con08], the current architecture has no predefined logic but uses
formal library objects to define the syntax and inference rules of a logic. Thus the
Nuprl system has become a logical framework that can accommodate arbitrary
logics whose inference rules can be expressed in a sequent style. Although almost
all of the actual development is still based on the Nuprl type theory, users may
now embed entirely new theories as independent proof calculi into the system’s
library and use the framework to automate reasoning in these theories.

To make use of this potential of the Nuprl system, which had not been ex-
plored before, we proceeded as follows. To embed the vocabulary of elementary
category theory we added abstract terms for each concept of the theory to the
system’s library as well as display forms for presenting these terms in a familiar
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syntax. For all inference rules of Kozen’s calculus we added rule objects to the
library and used Nuprl’s rule compiler to convert these into reasoning tactics
that execute these rules in the proof environment. To automate reasoning we
encoded standard theorem proving techniques as Nuprl proof tactics, developed
additional tactics to capture the reasoning patterns that are specific to category
theory, and added these tactics as code objects to the library.

In [KKR06] we have demonstrated that this approach can in fact automate
Kozen’s proof of the isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]].
With the additional techniques and calculi described in this paper, we are now
able to construct fully automated proofs for a variety of isomorphisms between
categories as well as proofs of the naturality of all all these isomorphisms.

The structure of this paper follows the development outlined above. In Sec-
tion 2 we briefly review Kozen’s first-order axiomatization of elementary category
theory. We then describe the implementation of this calculus within the Nuprl
logical framework in Section 3. Strategies that encode standard techniques from
automated theorem proving will be presented in Section 4. Strategies that au-
tomate reasoning specific to category theory and their application to proofs of
natural isomorphisms will be discussed in Section 5. We conclude by discussing
related approaches, insights that we have observed in the course of this work,
and new research issues that result from these observations.

2 An Axiomatization of Elementary Category Theory

We assume the reader to be familiar with the basic definitions and notation
of category theory [BW90, McL71]. We begin our review of Kozen’s calculus
[Koz04] with a few notational conventions.

– Symbols in sans serif, such as C, always denote categories. The category Cat
is the category of (small) categories and functors.

– If C is a category, the symbol C denotes both the category C and the set of
objects of C.

– A : C indicates that A is an object of the category C. Composition is denoted
by the symbol ◦ and the identity on object A : C is denoted 1A.

– h : C(A,B) indicates that h is an arrow of the category C with domain A
and codomain B.

– Fun[C,D] denotes the functor category whose objects are the functors from
C to D and whose arrows are the natural transformations on such func-
tors. Thus F : Fun[C,D] indicates that F is a functor from C to D and
ϕ : Fun[C,D](F,G) indicates that ϕ is a natural transformation with do-
main F and codomain G, where F,G : Fun[C,D].

– F 1 and F 2 denote the object and arrow components, respectively, of a functor
F . Thus if F : Fun[C,D], A,B : C, and h : C(A,B), then F 1A,F 1B : D and
F 2h : D(F 1A,F 1B).

– Function application binds tighter than the operators 1 and 2. Thus the
expression F 1A2 should be parsed (F 1A)2.
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– Cop denotes the opposite category of C.
– C×D denotes the product of the categories C and D. Its objects are pairs

(A,X) : C×D, where A : C and X : D, and its arrows consist of pairs
(f, h) : (C× D)((A,X), (B, Y )), where f : C(A,B) and h : D(X,Y ). Compo-
sition and identities are defined component-wise; that is,

(g, k)◦(f, h)
def
= (g◦f, k◦h) (1)

1(A,X)
def
= (1A, 1X). (2)

Inference rules are based on sequents Γ � α, where Γ is a type environment
(a set of type judgments on atomic symbols) and α is either a type judgment
or an equation. The rules cover the basic properties of categories, functors and
natural transformations. They are divided into symmetric sets of rules for anal-
ysis (elimination) and synthesis (introduction). There are also rules for equa-
tional reasoning. To support first-order reasoning about higher-order concepts
like functors, the rules deal with their first-order components.

Categories. There is a collection of rules covering the basic properties of cat-
egories, which are essentially the rules of typed monoids. These rules include
typing rules for composition and identities as well as equational rules for asso-
ciativity and two-sided identity.

Γ � A,B,C : C, Γ � f : C(A,B), Γ � g : C(B,C)

Γ � g◦f : C(A,C)
(3)

Γ � A : C

Γ � 1A : C(A,A)
(4)

Γ � A,B,C,D : C, Γ � f : C(A,B), Γ � g : C(B,C), Γ � h : C(C,D)

Γ � (h◦g)◦f = h◦(g◦f) , (5)

Γ � A,B : C, Γ � f : C(A,B)

Γ � f◦1A = f

Γ � A,B : C, Γ � f : C(A,B)

Γ � 1B◦f = f
(6)

Functors. A functor F from C to D is determined by its object and arrow
components F 1 and F 2. The components must be of the correct type and must
preserve composition and identities. These properties are captured in the follow-
ing rules.

Analysis
Γ � F : Fun[C,D], Γ � A : C

Γ � F 1A : D
(7)

Γ � F : Fun[C,D], Γ � A,B : C, Γ � f : C(A,B)

Γ � F 2f : D(F 1A,F 1B)
(8)
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Γ � F : Fun[C,D], Γ � A,B,C : C, Γ � f : C(A,B), Γ � g : C(B,C)

Γ � F 2(g◦f) = F 2g◦F 2f
(9)

Γ � F : Fun[C,D], Γ � A : C

Γ � F 21A = 1F 1A

(10)

Synthesis
Γ, A : C � F 1A : D

Γ, A,B : C, g : C(A,B) � F 2g : D(F 1A,F 1B)
Γ, A,B,C : C, f : C(A,B), g : C(B,C) � F 2(g◦f) = F 2g◦F 2f

Γ, A : C � F 21A = 1F 1A

Γ � F : Fun[C,D]
(11)

Natural Transformations. A natural transformation ϕ : Fun[C,D](F,G) is a
function that for each object A : C gives an arrow ϕA : D(F 1A,G1A), called the
component of ϕ at A, such that for all arrows g : C(A,B), the following diagram
commutes:

F 1A
F 2g� F 1B

G1A

ϕA

�
G2g� G1B

ϕB

�

(12)

Composition and identities are defined by

(ϕ◦ψ)A def
= ϕA◦ψA (13)

1FA
def
= 1F 1A. (14)

The property (12), along with the typing of ϕ, are captured in the following rules.

Analysis
Γ � ϕ : Fun[C,D](F,G)

Γ � F,G : Fun[C,D]
(15)

Γ � ϕ : Fun[C,D](F,G), Γ � A : C

Γ � ϕA : D(F 1A,G1A)
(16)

Γ � ϕ : Fun[C,D](F,G), Γ � A,B : C, Γ � g : C(A,B)

Γ � ϕB◦F 2g = G2g◦ϕA (17)

Synthesis Γ � F,G : Fun[C,D]
Γ, A : C � ϕA : D(F 1A,G1A)

Γ, A,B : C, g : C(A,B) � ϕB◦F 2g = G2g◦ϕA
Γ � ϕ : Fun[C,D](F,G)

(18)
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Equational Reasoning. Besides the usual domain-independent axioms of typed
equational logic (reflexivity, symmetry, transitivity, and congruence), certain
domain-dependent equations on objects and arrows are assumed as axioms, in-
cluding the associativity of composition (5) and two-sided identity rules (6) for
arrows, the equations (1) and (2) for products, and the equations (13) and (14)
for natural transformations. There are also extensionality rules for objects of
functional type:

Γ � F,G : Fun[C,D], Γ,A : C � F 1A = G1A

Γ � F 1 = G1
(19)

Γ � F,G : Fun[C,D], Γ, A,B : C, g : C(A,B) � F 2g = G2g

Γ � F 2 = G2
(20)

Γ � F,G : Fun[C,D], Γ � F 1 = G1, Γ � F 2 = G2

Γ � F = G
(21)

Γ � F,G : Fun[C,D], Γ � ϕ,ψ : Fun[C,D](F,G), Γ, A : C � ϕA = ψA

Γ � ϕ = ψ
(22)

Equations on types and substitution of equals for equals in type expressions are
also permitted. Any such equation α = β takes the form of a rule

Γ � A : α

Γ � A : β
. (23)

For the application example, the following type equations are postulated

Cat(C,D) = Fun[C,D] (24)

Cop = C (25)

Cop(A,B) = C(B,A). (26)

Other Rules. There are also various rules for products, weakening, and other
structural rules for manipulation of sequents. These are all quite standard and
do not bear explicit mention.

3 Implementing the Proof Calculus in Nuprl

Kozen’s axiomatization is sufficient for the development of completely formal
proofs for all theorems in elementary category theory. Kozen [Koz04] illus-
trates this fact by providing a rigorous formal proof that the functor categories
Fun[C×D,E] and Fun[C,Fun[D,E]] are naturally isomorphic. Although the
proof is fairly straightforward and omits many details for the sake of readabil-
ity it takes 13 pages on paper. As proofs of that size are difficult to construct
and carry the potential for errors it is necessary to implement the proof system
and to automate reasoning steps that mathematicians would consider obvious.
In this section we will show how the Nuprl logical framework can be used to
rapidly construct an implementation of Kozen’s calculus.
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3.1 Embedding the Vocabulary

We made use of Nuprl’s definition mechanism to implement the vocabulary of
elementary category theory. Abstraction objects can be used to add new abstract
terms to the formal library whose meaning may either be defined through ex-
pressions of the formal language defined so far, or be left unspecified if only the
signature shall be fixed. The abstract term for the set of objects of a category
C, for instance, is implemented by adding an abstraction object named Obj to
the library, which in the library listing appears as follows.

A Obj Obj{}(.C) == !primitive

This object introduces a new abstract term Obj with one subterm, denoted by
the variable C, and defines it to be primitive.1

Display forms can then be used to make the visual appearance of abstract
terms conform to the notation used on paper without changing their internal
structure. According to the conventions in section 2, for instance, the set of
objects of a category C is denoted by C. To introduce this notation, we add a
display object named Obj df to the library.

D Obj df <C> ≡ Obj{}(.<C>)
This object makes sure that the abstract term Obj{}(.C) will be displayed as C.
The angle brackets around C indicate that C is a parameter of the display form.

Display forms are important for interaction between the system and human
users as well as for a readable presentation of the implemented theory on paper.
The reasoning system itself deals only with abstract terms and can therefore
easily distinguish between a category and the set of its objects although both
have the same representation on the screen.

We have created abstraction and display objects for each concept of elemen-
tary category theory. Although it is possible to represent these concepts in terms
of Nuprl’s Type Theory and validate the implemented inference rules on this
basis we have chosen to use Nuprl only as logical framework for building an
independent system for reasoning about category theory and have declared all
fundamental abstract terms to be primitive.

Figure 1 lists the display objects that implement the vocabulary of elemen-
tary category theory. For the sake of readability we use math-font instead of
angle brackets to denote parameters. Note that a composition g◦f of two arrows
depends on the category C to which f and g belong but C is never mentioned
explicitly in compositions. Accordingly, C has to occur in the abstract term but
should not be shown when a composition is being displayed. For this reason,
the parameter C does not occur on the left hand side of the display form for
compositions and identities and the display of the category will be suppressed
as soon as the complete term has been entered into the system.

1 The formal declaration of Obj also contains an empty list of parameters between
curly braces and an empty list of variable bindings for the subterm in front of the
dot before C. Parameters and variable bindings are features of the Nuprl logical
framework that are necessary for representing more expressive theories but are not
needed for implementing elementary category theory.
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Obj C ≡ Obj{}(.C)
Mor C(A,B) ≡ Mor{}(.C;.A;.B)

Comp (g◦f) ≡ Comp{}(.C;.g;.f)
Id 1A ≡ Id{}(.C;.A)
fun1 F 1A ≡ fun1{}(.F;.A)
fun2 F 2g ≡ fun2{}(.F;.g)
CatFun Fun[C,D] ≡ CatFun{}(.C;.D)

CatProd C×D ≡ CatProd{}(.C;.D)

CatOp C-op ≡ CatOp{}(.C)
CatCat Cat ≡ CatCat{}()

Fig. 1. Display objects implementing the syntax of elementary category theory

Currently, Nuprl’s display is restricted to a single 8-bit font. This limits the
use of symbols, subscripts and superscripts to fixed characters. Identities, usually
written as 1A or 1(A,X), have to be presented as 1A and 1<A,X>.2 Apart from
these restrictions, all the basic category-theoretic vocabulary will be displayed
in the same way as described in Section 2.

Besides the vocabulary of elementary category theory Kozen [Koz04] uses
a notion of isomorphism of categories and naturality of isomorphisms. These
concepts can be defined in terms of the existing notions (see Section 5.2 for an
explanation) and are implemented by the following formal definitions.

F and G are inverse
== ∀A,B:C. ∀f:C(A,B). G1F 1A = A ∈ C ∧ G2F 2f = f ∈ C(A,B)

∧ ∀X,Y:D. ∀h:D(X,Y). F 1G1X = X ∈ D ∧ F 2G2h = h ∈ D(X,Y)

C =̂D
== ∃θ:Fun[C,D]. ∃η:Fun[D,C]. θ and η are inverse

C =̂D via θ and η

== θ ∈Fun[C,D] ∧ η ∈Fun[D,C] ∧ θ and η are inverse

C and D are naturally isomorphic

== ∃CAT. ∃U,V:Fun[CAT,Cat]
∃θ:Fun[CAT,Cat](U,V). ∃η:Fun[CAT,Cat](V,U).

∀c:CAT. C =̂D via θ c and η c

3.2 Implementation of Inference Rules

Like the proof calculus presented in the previous section, Nuprl’s inference mech-
anism is based on sequents. Nuprl’s reasoning style, however, is goal-oriented,
which means that inference rules operate top-down, refining a goal sequent into
a set of subgoal sequents. Inference rules therefore have to be rephrased in a
top-down fashion before they can be added to the system.

For the actual implementation of the proof calculus we made use of Nuprl’s
rule mechanism. Rule objects can be used to add schematic inference rules to the
formal library. These consist of formal terms that describe a goal sequent and

2 In Nuprl pairs use angle brackets <A,X> instead of parentheses.
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the corresponding subgoal sequents and may contain pattern variables that can
be matched against the components of the actual goal sequent in a proof. Since
the representation of the rules in the system is identical to the paper version it
is easy to check the faithfulness of the implementation. Rule (16), for instance,
is represented by a rule object NatTransApply with the following contents.

The rule states that in order to prove a goal sequent Γ � ϕA : D(F 1A,G1A) one
has to prove Γ � ϕ : Fun[C,D](F,G) and Γ � A : C for some category C, which
is exactly the same as rule (16). Due to the top-down style of the rule, C must
be provided as parameter, since it occurs in the subgoal sequents but not in the
main goal.

To create the actual inference rule from its representation as term one ap-
plies the rule compiler of the Nuprl logical framework to the rule object. This
generates a proof tactic that matches the first line of a rule object against the
actual goal sequent of a proof and creates the subgoal sequents by instantiating
the lines below the name of the rule accordingly. The proof tactic for the above
rule, for instance, is generated by the following simple ML declaration

let NatTransApply C = Refine ‘NatTransApply‘ [term arg C].

To apply this tactic, one has to provide a term C as argument, which is then
inserted into the two subgoals created by the rule. Tactics may also expect tokens
as arguments, which will then be used as names for variables that occur in the
subgoals but not in the main goal. The tactic for the synthesis rule (11), for
instance, requires five such names (for A,B,C, f , and g) to be provided.

Since Nuprl supports typed equalities and types often provide useful informa-
tion for guiding proofs, we added types to all the inference rules that deal with
equalities. For example, rule (17) is represented as follows:

We have generated rule objects for all the rules described in Section 2, as well as
rules for dealing with products. Logical rules and rules dealing with extensional
equality and substitution are already provided by Nuprl.
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4 Automating First-Order and Equational Reasoning

The implementation of the proof calculus described in Section 3 enables us to
create formal proofs for many theorems of basic category theory. But even the
most simple of these theorems already lead to proofs with hundreds or even
thousands of inference steps, as illustrated in [Koz04]. Since most of these state-
ments are considered mathematically trivial, it should be possible to completely
automate their proofs.

We have developed a small collection of strategies for automated proof search
in basic category theory. Some of these strategies are based on generic techniques
from automated theorem proving. Others are intended to capture the general
patterns of category theory specific reasoning that we have observed in hand-
constructed proofs. We will discuss the former in this section and elaborate on
the latter in Section 5.

Most of the inference rules of our proof calculus are simple refinement rules
that describe how to decompose a proof obligation into simpler components.
Given a specific proof goal, there are only few rules that can be applied at all.
Thus to a large extent, proof search consists of determining applicable rules and
their parameters from the context, applying the rule, and then continuing the
search on all the subgoals. Occasionally we will have to prove equalities, which
may involve the application of extensionality rules as well as standard equality
reasoning.

4.1 Automating Search

To support proof automation, all basic inference rules first had to be converted
into simple tactics that automatically determine the parameters of these rules.

Generating names for new variables in the subgoals, as in the case of the
extensionality rules (19)–(22), is straightforward. In principle it is sufficient to
use a procedure that generate arbitrary new names but for the sake of readability
we had the procedure generate memnonic names that fit the textual description
of the rules.

To determine the terms that have to provided as parameters for certain infer-
ence rules one can take advantage of the fact that these parameters are explicitly
mentioned in the subgoals of the rule, which puts certain type constraints on pos-
sible values. In the rule NatTransApply, for instance, C is the category to which
the object A belongs and also the domain of the functors F and G. Therefore all
term parameters of inference rules can be determined through an extended type
inference algorithm.

To identify applicable rules it is sufficient to analyze the terms and types in
the conclusion of the goal sequent. A conclusion of the form ϕA ∈D(X,Y ), for
instance, suggests the application of the rule NatTransApply or, less likely, of
the rule NatTransFormation (rule (18)) if D turns out to be a functor category.
In most cases only one rule can be meaningfully applied to a proof goal with
a type judgment and this rule can be identified with the help of extended type
inference.
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An important issue is loop control. Since the synthesis rules for functors and
natural transformations are the inverse of the corresponding analysis rules, an
analysis rule could create a subgoal that has already been decomposed by a
synthesis rule before and thus create a looping argument. To prevent such loops
we made each proof branch keep track of proof goals to which a synthesis rule
had been applied. Analysis rules that would generate one of these goals as a
subgoal will thus be blocked from being applied.

4.2 Equality Reasoning

Equality reasoning is a key component in formal category-theoretic proofs. Ten of
the inference rules deal with equalities and can be used to replace a term by one
that is semantically equal. Since equality rules can be used both ways, they are
a very powerful tool in the hands of a skilled user, but a potential cause for loops
in an automated search for a proof. A simple proof search method as described
above is therefore insufficient for automating proofs involving equalities.

We have decided to base our proof search mechanism on rewriting. For the
purpose of finding a proof for a given equality we assign a direction to each of the
equalities and attempt to rewrite terms into some normal form. Furthermore,
the search procedure has to keep track of the types involved in these equalities,
which are sometimes crucial for finding a proper match and, as in the case of
rule (17), for determining the right-hand side of an equality from the left-hand
side. The inference rules described in Section 2, including those dealing with
associativity and identity, lead to the following typed rewrites.

Rewrite Type Rule

<g, k>◦<f, h> �→ <g◦f, k◦h> C×D(<A1, X1>,<A3, X3>) (01)
1<A,X> �→ <1A, 1X> C×D(<A,X>,<A,X>) (02)
1B◦f �→ f C(A,B) (06a)
f◦1A �→ f C(A,B) (06b)
h◦(g◦f) �→ (h◦g)◦f C(A,B2) (05)
F 2(g◦f) �→ F 2g◦F 2f D(F 1A,F 1B1) (09)
F 21A �→ 1F1A D(F 1A,F 1A) (10)
(ψ◦ϕ)A �→ ψA◦ϕA D(F 1A,H1A) (13)
1FA �→ 1F1A D(F 1A,F 1A) (14)
ϕB◦F 2g �→ G2g◦ϕA D(F 1A,G1B) (17)

Each rewrite is executed by applying a substitution, which is validated by
applying the corresponding equality rule mentioned in the table above. The
equations (24)–(26) deal solely with types and are treated separately.

The above rewrite system is incomplete, as it cannot prove the equality of
terms like F 2(1A, 1X) and 1F 1(A,X) that can be shown equal with the inference
rules. To convert the equational theory contained in our calculus into an equiv-
alent set of rewrite rules guaranteeing normalization and confluence, we have
applied the superposition-based Knuth-Bendix completion procedure [EB70]. As
a result, the following typed rewrites were added to the system.
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Rewrite Type Rules

F 2<1A, 1X> �→ 1F1<A,X> E(F 1<A,X>,F 1<A,X>) (02),(10)

F 2<g, k>◦F 2<f, h> �→ F 2<g◦f, k◦h> E(F 1<A,X>,F 1<C,X>) (01),(09)

(ϕY A)◦(F 2gA) �→ (G2gA)◦(ϕXA) E(F 1X1A,G1Y 1A) (17),(13)

(ϕY ◦ψY )◦F 2g �→ (G2g◦ϕX)◦ψX E(F 1X,G1Y ) (13),(17)

H2(ϕY )◦H2(F 2g) �→ H2(G2g)◦H2(ϕX) E(H1F 1X,H1G1Y ) (05),(17)

(h◦ϕY )◦F 2g �→ (h◦G2g)◦ϕX D(F 1X,Z) (09),(17)

((h◦G2g)◦ϕX)◦ψX �→ ((h◦ϕY )◦ψY )◦F 2g E(F 1X,Z) (05),(13),(17)

(h◦H2(ϕY ))◦H2(F 2g) �→ (h◦H2(G2g))◦H2(ϕX) E(H1F 1X,Z) (09),(09),(17)

Once a set of rewrites for a given equality has been found it is converted
into a series of refinement steps by applying the equality rules associated with
each rewrite in the appropriate direction. As a result, the generated proof tree
contains a trace of the chain of equalities used, which can then be inspected by
a human user interested in understanding the details of a proof.

4.3 Performance Issues

One of the disadvantages of refinement style reasoning is that proof trees may
contain identical proof goals in different branches. This is especially true after
the application of synthesis and extensionality rules, which must be used quite
often in complex proofs.

H � F ∈ Fun[C,D]

BY FunFormation A B B1 f g

H, A:C � F1A ∈ D
H, A:C, B:C, f:C(A,B) � F2f ∈ D(F1A,F1B)

H, A:C, B:C, B1:C, f:C(A,B), g:C(B,B1) � F2(g◦f) = F2g◦F2f ∈ D(F1A,F1B1)

H, A:C � F21A = 1F1A ∈ D(F1A,F1A)

The rule FunFormation (rule (11)), for instance, generates a subgoal of the
form F 1A, which will eventually reappear in the proof of the second, since F 1A
occurs within the type of that goal. Furthermore, the first two subgoals will also
reappear in the proofs of the third and fourth subgoals. In a bottom-up proof,
one would prove these goals only once and reuse them whenever they are needed
to complete the proof of another goal while a standard refinement proof would
require us to prove the same goal over and over again.

Obviously we could optimize the corresponding rules for top-down reasoning
and simply drop the redundant subgoals. But this would mean deviating from
the original proof calculus. If one intends to retain faithfulness these rules must
remain unchanged. Instead, we have wrapped the corresponding tactic with a
controlled application of the cut rule: we simply assert a generalization of the
first two subgoals of rule (11) before applying the rule. As a result they appear
in the hypothesis list of the all subgoals and have to be proved only once.

Although this method is a fairly simple trick, it leads to an astonishing re-
duction in the size of automatically generated proofs. A complete proof of the
isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]] (see Section 5) with-
out cuts consists of almost 30,000 inference steps. After introducing the wrapper
the size of the proof was reduced to only 3,000 steps.
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4.4 First-Order Reasoning about Higher Order Objects

Although elementary category theory deals with higher-order objects such as
functors and natural transformations, Kozen’s axiomatization [Koz04] has been
formulated entirely as first-order calculus. This means that the properties of
functors and natural transformations have to be described in terms of their
first-order components (rules (7) – (11), (15) – (18)).

Keeping the reasoning level first order becomes more difficult when reasoning
about isomorphisms between categories. Two categories C and D are isomorphic,
denoted by C =̂ D, if there are two functors θ : Fun[C,D] and η : Fun[D,C]
that are inverses of each other. A computerized proof of this fact would require
us to provide θ and η, which involves higher-order reasoning.

To avoid this issue, the proof in [Koz04] specifies the object and arrow compo-
nents θ1A and θ2f for A an object of C and f an arrow of C through first-order
equations. If these components are again functors or natural transformations,
one has to specify subcomponents until the first-order level has been reached.
In the proof of the isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]],
the following four equations are needed to specify θ:

θ1F1A1 X ≡ F1<A, X>

θ1F1A2 k ≡ F2<1A, k>

θ1F2 f X ≡ F2<f, 1X>

θ2 ϕ X X1 ≡ ϕ <X, X1>

Mathematically, these four equations are sufficient for the proof, since any
functor satisfying these equations can be used to complete the proof. In a com-
puterized formal proof, however, we also have to prove the existence of a func-
tor satisfying these equations. Constructing the functor from the equations is
straightforward if it is uniquely specified by them. It is only necessary to as-
semble the respective object and arrow (sub-)components into a single closed
functor object. Since assembling the functor from components has nothing to do
with the main proof, this step is performed automatically in the background as
soon as the components have been completely specified.

5 Automating Reasoning Specific to Category Theory

The mechanisms described in the previous section are sufficient to verify proper-
ties of given functors and natural transformations. A proof of the isomorphism
between Fun[C×D,E] and Fun[C,Fun[D,E]] can be completely automated once
the specifications of the inverse functors θ and η have been provided. One only
has to unfold the definition of functors being inverse to each other and then all
the remaining steps are straightforward for the automated proof search proce-
dure AutoCAT2 and take only a few seconds to complete.
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* ∀C,D,E:Categories. Fun[C×D,E] =̂ Fun[C,Fun[D,E]]

BY ....

1.-3. C,D,E: Cat
4. θ1F1A1 X ≡ F1<A, X> ∧ θ1F1A2 k ≡ F2<1A, k>

∧ θ1F2 f X ≡ F2<f, 1X> ∧ θ2 ϕ X X1 ≡ ϕ <X, X1>

5. η1F1<A, X> ≡ F1A1X ∧ η1F2<f, g> ≡ ((F2f cod(g))◦F1dom(f)2g)
∧ η2ϕ <A, X1> ≡ ϕ A X1

� θ and η are inverse

BY AutoCAT2

But finding the specifications of the functors cannot be accomplished with stan-
dard reasoning techniques, since matching and unification are of little help here.
On the other hand, for a trained mathematician this is a trivial task as there
are only a few “obvious” choices. If a functor exists at all the types of its first-
order components usually contain all the information that is needed to make an
educated guess. In practice, this simple heuristic hardly ever fails, particularly
if the proof is considered trivial from an intellectual point of view.

Since the proof steps that are considered intellectually trivial should be au-
tomated, we have developed heuristics that attempt to determine the most
obvious specifications for functors or natural transformations of a given type.
We will illustrate both by example of the isomorphism between the categories
Fun[C×D,E] and Fun[C,Fun[D,E]] and the naturality of this isomorphism and
then discuss a few details of their formalization as implemented proof strategy.

5.1 Finding Witnesses for Isomorphisms between Categories

To prove the existence of a functor F between two categories C and D our
heuristic first generates typing subgoals for all first-order components of the
functor. For this purpose it applies the refinement rules of our proof calculus
to the goal Γ � F ∈ Fun[C,D], where Γ is the current context of the proof
and F is a new variable, and proceeds with refining typing judgments until they
cannot be decomposed anymore. Equalities will be ignored as they do not provide
information that is immediately useful.

To prove the existence of a functor θ between the categories Fun[C×D,E]
and Fun[C,Fun[D,E]], for instance, the application of refinement rules yields
the (incomplete) proof shown in figure 2. The four open subgoals in this proof,
labelled 1.1.1, 1.1.2, 1.2.1, and 2.1.1, describe the typing conditions for all the
first-order components of θ.

Next, the heuristic tries to determine a term that satisfies the given type
judgment in the corresponding type environment. Because this term is intended
to be a “trivial” solution, it should use be built solely from parameters explic-
itly mentioned in the first-order component of the functor and constructs that
mathematicians would consider obvious choices like functor application, iden-
tities, domains, ranges, pairs etc. Obviously, the heuristic has to rely on type
inference to construct a term that fits these requirements.

To solve subgoal 1.1.1., for instance, the heuristic has to construct an object
of the category E from the components F : Fun[C×D,E], A : C, and X : D.
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top � θ ∈ Fun[ Fun[C×D,E], Fun[C,Fun[D,E]] ] (11)

1. F:Fun[C×D,E] � θ1F ∈ Fun[C,Fun[D,E]] (11)
1.1. F:Fun[C×D,E], A:C � θ1F1A ∈ Fun[D,E] (11)

1.1.1. F:Fun[C×D,E], A:C, X:D

� θ1F1A1X ∈ E

1.1.2. F:Fun[C×D,E], A:C, X,Y:D, k:D(X,Y)
� θ1F1A2k ∈ E(θ1F1A1X, θ1F1A1Y)

1.2. F:Fun[C×D,E], A,B:C, f:C(A,B)

� θ1F2f ∈ Fun[D,E](θ1F1A,θ1F1B) (18)

1.2.1. F:Fun[C×D,E], A,B:C, f:C(A,B), X:D
� θ1F2f X ∈ E(θ1F1A1X, θ1F1B1X)

2. F,G:Fun[C×D,E], ϕ:Fun[C×D,E](F,G)

� θ2 ϕ ∈ Fun[C,Fun[D,E]](θ1F, θ1G) (18)

2.1. F,G:Fun[C×D,E], ϕ:Fun[C×D,E](F,G), X:C
� θ2 ϕ X ∈ Fun[D,E](θ1F1X, θ1G1X) (18)

2.1.1. F,G:Fun[C×D,E], ϕ:Fun[C×D,E](F,G), X:C, X1:D

� θ2 ϕ X X1 ∈ E(θ1F1X1X1, θ1G1X1X1)

Fig. 2. Decomposition of the typing θ∈ Fun[ Fun[C×D,E], Fun[C,Fun[D,E]] ]. The
numbers on the right indicate the inference rules that were used.

Among the declared parameters, there is no object of the category E, so the
heuristic looks for parameters whose types contain the goal type. It finds the
functor F with range E, which reduces the task of constructing an object of E to
constructing an object z : C×D and applying F 1 to it. Since objects in C×D are
pairs (A,X) where A : C andX : D, the task is now finding an object in C and one
in D. There are obvious choices for these two objects in the type environment,
which means that all the components of the term have been identified. As a
result, the heuristic returns the specification θ1F 1A1X = F 1(A,X).

Determining the arguments of a functor or natural transformation is not al-
ways as straightforward. In the above case, the parameters in the type envi-
ronment could be taken directly as components of the term because their types
fit the requirements on these components. In other cases, the type environment
may provide only an object where an arrow is needed or vice versa. In these sit-
uations the most obvious choice is turning an object into an identity arrow and
an arrow into its domain or codomain, depending on the typing requirements.

To solve subgoal 1.1.2. we have to build an arrow in E(θ1F 1A1X, θ1F 1A1Y )
from the components F : Fun[C×D,E], A : C, X,Y : D, and k : D(X,Y ). Since
subgoal 1.1.1. has already been solved, the equality θ1F 1A1X = F 1(A,X) can
be used to simplify the goal type to E(F 1(A,X), F 1(A, Y )). To build an arrow of
that type from the given parameters, the heuristic has to apply F 2 to an arrow
h ∈C×D((A,X), (A, Y )), i.e. to a pair of arrows (f, g) where f : C(A,A) and
g : D(X,Y ). For the latter, we can pick k but there is no immediate match for
f : C(A,A). Since θ1F 1A2 k, the component of θ that shall be specified in this
step, explicitly mentions A, the only choice for an arrow in C(A,A) is the identity
1A. As a result, the heuristic returns the specification θ1F 1A2 k = F 2(1A, k).
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Subgoal 1.2.1. can be solved in the same manner, which leads to the speci-
fication θ1F 2 f X = F 2(f, 1X). The solution of subgoal 2.1.1. proceeds as the
one for subgoal 1.1.1. and yields θ2ϕXX1 = ϕ(X,X1).

In some cases, parameters and identities alone are not sufficient to satisfy
a typing conditions, but a simple composition of natural transformation and
functor in the style of the equality rule (17) would do so. In this case, the heuristic
has to use the functor and its arguments twice in different ways. Although this
solution is less obvious it is still considered a standard pattern of reasoning.

We have developed a calculus for witness construction that formalizes the
heuristic described above. Rules decompose a goal sequent similar to our proof
rules in section 3.2 and come with a mechanism that composes sets of specifica-
tion equations for subgoal sequents into specification equations for the main goal.

There are a few rules that construct specification equations from scratch.
If an element z of type Δ has been declared then it can be used as witness
to satisfy the type judgment x ∈Δ, i.e. we construct the specification equation
x = z. Furthermore, if the declaration contains a type Δ[V1, ..Vn] with free type
variables Vi and the type judgment contains an instantiated version Δ[T1, ..Tn],
then the equations V1 = T1, .., Vn = Tn will be constructed as well. In our
calculus we write this rule as follows

Γ , z:Δ[V1, ..Vn] � x ∈Δ[T1, ..Tn] specs {x = z, V1 = T1, .., Vn = Tn},

where the notation specs EQ indicates that the set of specification equations
EQ will be constructed if the rule can be applied successfully.

There is also a rule that constructs identities to satisfy a type judgment
f ∈C(A,A) if the type environment contains a declaration of an object A of
C and a rule that constructs domains or codomains to satisfy a type judgment
x ∈C if the type environment contains a declaration of an arrow f ∈C(A,B).

Other rules decompose category constructors like functors or products that
occur in the type environment or in the type judgment. For instance, in order to
use a functor F :Fun[C,D] when constructing a term x ∈Δ one has to construct
an object z of C and show how to use an object y of D in the construction of x.
If both goals succeed and yield specification equations EQ1 and EQ2 then the
specification equation for the main goal is the union of EQ1 and EQ2 where y
is being replaced by F 1z.

Γ , F :Fun[C,D] � x ∈Δ specs EQ1 ∪ EQ2[F
1z/y]

Γ � z ∈C specs EQ1

Γ , y : D � x ∈Δ specs EQ2

For each constructor there are two rules for decomposing objects and arrows
in a type judgment and two rules for decomposing objects and arrows in the
type environment. There are also equality reduction rules that simplify a type
judgment or a part of the environment by applying a known equality. Figure 3
shows the fragment of our calculus that is necessary for dealing with sequents
containing functors and products.
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1. Basic rules:

– Γ , z:Δ[V1, ..Vn] � x ∈Δ[T1, ..Tn] specs {x = z, V1 = T1, .., Vn := Tn}
– Γ , A:C � f ∈C(A,A) specs {f = 1A}
– Γ , f :C(A,B) � x ∈C specs {x = dom(f)}
Γ , f :C(A,B) � x∈C specs {x := cod(f)}

– Γ , f :C(A,B) � h ∈C(A,X) specs {h = g◦f}∪EQ
Γ , f :C(A,B) � g ∈C(B,X) specs EQ

Γ , g:C(B,X) � h ∈C(A,X) specs {h = g◦f}∪EQ
Γ , g:C(B,X) � f ∈C(A,B) specs EQ

– Γ , exp = t � x ∈Δ specs EQ
Γ , exp = t � x ∈Δ[t/exp] specs EQ

Γ , exp = t, y:Γ ’ � x ∈Δ specs EQ
Γ , exp = t, y:Γ ’[t/exp] � x ∈Δ specs EQ

2. Functors:

– Γ � F ∈Fun[C,D] specs EQ1 ∪ EQ2

Γ , c : C � F 1c:D specs EQ1

Γ , EQ1, f : C(A,B) � F 2f ∈D(F 1A,F 1B) specs EQ2

– Γ � ϕ ∈Fun[C,D](F,G) specs EQ
Γ , A : C � ϕA ∈D(F 1A,G1A) specs EQ

– Γ , F :Fun[C,D] � x ∈Δ specs EQ1 ∪ EQ2[F
1z/y]

Γ � z ∈C specs EQ1

Γ , y : D � x ∈Δ specs EQ2

Γ , F :Fun[C,D] � x ∈Δ specs EQ1∪EQ2[F
2f/h]

Γ � f ∈C(T1, T2) specs EQ1

Γ , A,B : C, h : D(F 1A,F 1B) � x ∈Δ specs EQ2∪{A = T1, B = T2}
– Γ , ϕ:Fun[C,D](F, G) � x ∈Δ specs EQ1∪EQ2[ϕA/h]

Γ � A∈C specs EQ1

Γ , h:D(F 1A,G1A) � x ∈Δ specs EQ2

3. Products:

– Γ � z ∈C×D specs EQ1∪EQ2∪{z = 〈c, d〉}
Γ � c ∈C specs EQ1

Γ � d∈D specs EQ2

– Γ � f ∈C×D(〈A,X〉,〈B, Y 〉) specs EQ1∪EQ2∪{f = 〈g, h〉}
Γ � g ∈C(A,B) specs EQ1

Γ � h ∈D(X,Y ) specs EQ2

– Γ , z:C×D � x ∈Δ specs EQ∪{z = 〈c, d〉}
Γ , c:C, d:D � x ∈Δ specs EQ

– Γ , f :C×D(〈A,X〉,〈B, Y 〉) � x∈Δ specs EQ∪{f = 〈g, h〉
Γ , g:C(A,B), h:D(X, Y ) � x ∈Δ specs EQ

Fig. 3. Calculus for witness construction
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To find a set of first-order specification equations that satisfies a given type
judgment, our witness construction strategy iteratively applies rules of the cal-
culus of witness construction until specification equations can be constructed
and then composes the specification equations at the leave nodes of the decom-
position tree into specification equations for the main goal. If more than one rule
can be applied, it applies them in a predefined order of “simplicity”. If a rule
generates more than one subgoal sequent, then the solution for the first subgoal
may be used while solving the second.

We have integrated this strategy into a proof tactic ProveIso for proving
isomorphisms between categories whose proofs are considered trivial by mathe-
maticians. ProveIso first unfolds the definition of isomorphisms and decomposes
the proof goal. Afterwards the witness construction strategy will guess values for
the functors θ and η between the two categories and finally the automated proof
search procedure AutoCAT2 will be called to validate that θ and η are indeed
functors of the appropriate types and that they are inverse to each other.

We have applied this tactic to a small collection of isomorphism problems
involving functor categories, product categories, and opposite categories. In each
case, the isomorphism could be proven by ProveIso without a need for further
interaction with the user. The screenshot above shows the formal proof that the
functor categories Fun[C×D,E] and Fun[C,Fun[D,E]] are isomorphic. On the
top-level of this proof a user will only see that the proof was successful (indicated
by a star in front of the tactic call BY ProveIso). Most users will be satisfied with
that amount of information. For users interested in details of the proof the Nuprl
system can display the proof tree in several layers of abstraction. The first layer,
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shown in the snapshot as well, reveals the key idea that was necessary to solve
the problem, but hides the tedious details involved in validating the solution.

Users interested in even more details may subsequently unfold the complete
proof tree. However, one should be aware that this tree is huge. It takes 1046
and, respectively, 875 basic inferences to prove that θ and η are indeed functors
of the appropriate types and another 1141 inferences to prove that they are
inverse to each other. The overall structure of this proof is similar to the hand-
constructed one described in [Koz04], which required many hours of careful work
to complete. In contrast to that the creation of the proof with ProveIso was
fully automated and took only a few seconds to complete.

5.2 Proving Categories to Be Naturally Isomorphic

Proving the naturality of an isomorphism between two categories C1 and C2

is more demanding than just proving them to be isomorphic since the inverse
functors θ and η between C1 and C2 now have to be natural transformation of
type Fun[CAT,Cat](U, V ) and Fun[CAT,Cat](V, U) , where CAT is a yet to be
determined product of the large categories Cat and Catop that fit the component
categories of C and D and their polarities3 and U and V are (unknown) elements
of Fun[CAT,Cat].

Constructing CAT is straightforward. For each component category of C1 we
determine the polarity of its occurrence in C1, and choose the category Cat if it
occurs positively in C1 (and C2, respectively) and Catop if it occurs negatively.
If the respective polarities are different in C1 and C2, then there is no simple
natural isomorphism between the two categories and construction fails.4 For the
isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]], for instance, CAT
has to be Catop × Catop × Cat, since C and D occur with negative polarities in
Fun[C×D,E] and Fun[C,Fun[D,E]] while E occurs positively.

Finding the functors U and V seems more difficult but is still considered ob-
vious because all the relevant information for specifying them is expected to be
contained in the terms that describe the construction of C1 and C2 from their
components. Applying the object component of U and V to a tuple of compo-
nent categories, for instance, has to result in C1 and C2, respectively. Therefore
specifications for U1 and V 1 and also a typing of U2 and V 2 can be easily con-
structed and a procedure similar to our witness construction strategy should be
able to find a complete specification of all the first-order components of U and
V . For the natural isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]]
this approach gives us the two specifications

U1(C,D,E)=Fun[C×D,E] and V 1(C,D,E)=Fun[C,Fun[D,E]]

as well as the typings

3 A negative polarity indicates that a component category occurs on the left side of a
functor. Otherwise the polarity is positive.

4 We believe that in such situations the two categories are not isomorphic at all.
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U2(f, g, h) ∈Fun[Fun[C×D,E],Fun[C′×D′,E′]] and

V 2(f, g, h) ∈Fun[Fun[C,Fun[D,E]],Fun[C,Fun[D,E]]].

To solve the latter requirement for U , we have to construct a functor between the
categories Fun[C×D,E] and Fun[C′×D′,E′] from functors f, g, and g between
C and C′, D and D′, and E and E′. This construction depends only on the
construction of the category Fun[C×D,E] from its components but not on the
fact that Fun[C×D,E] and Fun[C,Fun[D,E]] have to be isomorphic. Since U
shall be the domain of a natural transformation on large categories, one should
expect that there is a “natural” method to construct its arrow component in a
way that fits the construction of its object component.

Therefore, our approach to finding specifications that satisfy the requirements
on the functors U and V is based on the hypothesis that there should be a
natural method to extend a function that constructs a category from component
categories into a functor on the category of categories whose object component
is the given function. To formalize such a method we have developed a calculus
of constructor functors. In this calculus we consider constructs like product,
coproduct, functor, opposite, empty, or unit categories as object component of
a functor on large categories and describe an arrow component that is naturally
associated with it. For example, the product constructor is described as functor
F
Prod

: Fun[Cat×Cat,Cat], where F
Prod

1(C,D) = C×D and F
Prod

2(f, g) = (f, g). The
functor constructor is a functor F

Fun
: Fun[Cat×Cat,Cat], where F

Fun

1(C,D) =
Fun[C,D] and F

Fun

2(f, g)1(F ) = g◦F◦f F
Fun

2(f, g)2(ϕ) = g2◦ϕ◦f1.
Using the specifications of elementary constructor functors a constructor for a

given category is constructed by decomposing the category into basic constructor
functions and composing the associated functors accordingly.

We have integrated this strategy into a proof tactic ProveNatIso for proving
isomorphisms between categories to be natural. Like ProveIso, ProveNatIso
first unfolds and decomposes the definition of natural isomorphisms. Then the
domain and codomain U and V of the natural transformations will be con-
structed using the calculus of constructor functors and afterwards the natural
transformations θ and η using the calculus of witness construction. Finally the
tactic AutoCAT2 will validate the required properties on θ and η.

We have applied this tactic to the same collection of isomorphism problems
as before and were able to prove all isomorphisms to be natural. The screen-
shot below shows the formal proof that the functor categories Fun[C×D,E] and
Fun[C,Fun[D,E]] are naturally isomorphic as well as the first layer of the proof
tree that has been constructed by ProveNatIso.

Again, the overall structure of this proof is similar to the hand-constructed
one described in [Koz04], which indicates that the strategy does indeed automate
the most obvious line of reasoning. Furthermore, the fact that the proofs of all
“trivial” isomorphisms could be proven without a need for further interaction
with the user shows that these proofs are in fact trivial in the sense that only
natural constructions, standard forms of reasoning, and meticulous attention to
detail are required to solve the problem.
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6 Conclusion and Future Work

We have presented an implementation of Kozen’s axiomatization of elementary
category theory [Koz04] using the Nuprl logical framework [AC+00, AB+05] and
a collection of proof tactics that automate standard patterns of reasoning in logic
and category theory. We have demonstrated the effectiveness of this approach by
automatically deriving proofs of natural isomorphisms between categories, one
example of which is presented in detail above. The system works very well on
the examples we have tried.

There is a number of alternative approaches to a formalization and automation
of category theory. The Mizar approach [Miz, Try92, Ba01a, Ba01b, Ba01c] aims
at a formal reconstruction of mathematical knowledge in a computer-oriented
environment.Mizar’s library seems to contain the most comprehensive collection
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of theorems but it does not provide a mechanism for automating domain-specific
reasoning tasks.

The system of Cáccamo and Winskel [CW01] presents a second order calculus
for a fragment of category theory, which permits a more elegant representation
of higher-order constructs like functors or natural transformations. Since higher-
order reasoning is more difficult to automate, however, facts like Yoneda’s lemma
need to be stated as a rules instead of being derived as theorems.

Burstall and Rydeheard [RB88] have implemented a substantial fragment of
Computational Category Theory in Standard ML. The focus of their work, how-
ever, was not on the development of proofs but on creating a basis for the use
of category theory in program design.

Other approaches aim at formalizations of category theory in interactive proof
systems. Glimming [Gli01] describes a development of basic category theory
and a couple of concrete categories (Unit, Set, Gal, Cat, Poset and Cpo) in
Isabelle/HOL. O’Keefe [O’K04] presents a formalization of category theory in
Isabelle that focuses on the readability of proofs, aiming at a representation close
to one in a mathematical textbook. In both approaches there are no attempts
to improve automation beyond Isabelle’s generic prover.

Dyckhoff [Dyc08] presents an formalization of category theory in Martin-Löf
type theory that has some similarity to Kozen’s first-order axiomatization but
uses higher-order constructs in some of the rules. Dyckhoff hints at techniques
to automate reasoning in his calculus but there is no actual implementation.

In the Coq library there are two contributions concerning category theory. The
development of Säıbi and Huet [HS95, Sai95] contains definitions and construc-
tions up to cartesian closed categories, which are then applied to the category
of sets. The formalization is directly based on the Coq’s type theory. In contrast
to that Simpson’s formalization [Sim04] is set up in a ZFC-like environment and
includes some tactics to improve the automation. Both approaches, however, are
not described in any official publication.

A key difference between these works and our approach is that we have given
a full implementation of an independent calculus for reasoning about category.
In addition, we have provided a family of tactics that allow many proofs to
be automated. None of the other implementations we have encountered make
any attempt to isolate an independent formal axiomatization of the elementary
theory. Instead, they embed category theory into some other logic, and reasoning
relies mostly on the underlying logic.

There are a number of technical insights that we have observed in the course
of this work, which show the advantage of using the Nuprl system as framework
for implementing category theory.

– The use of abstractions and display forms is crucial for comprehensibility. It
is often very difficult to keep track of typing judgments currently in force.
Judicious choice of the display form can make a great difference in readability.

– The combination of rule objects and rule compiler are essential for a faithful
implementation of proof calculi. Rule objects contain visual representations
of proof rules that look almost identical to the version on paper and can
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easily be checked for correctness while the actual implementation of the rule
is being generated by the rule compiler.

– Formal proofs, even of elementary facts, have thousands of basic inferences,
which are often quite tedious and do not lend much insight. This indicates to
us that elementary category theory is a very good candidate for automation.

– The ability to inspect proof objects at increasing levels of abstraction makes
it possible to generate proofs that humans can understand and check to the
very last detail even if the formal proof is extremely large.

– Nuprl’s tactic mechanism makes it possible to quickly implement and test
new reasoning strategies and to embed new reasoning patterns when they
are discovered in the course of a not yet fully automated proof.

– Reasoning in elementary category theory can be automated very well once
there is an understanding of the typical kinds of reasoning that mathemati-
cians consider obvious. As most reasoning steps are based on straightforward
decomposition and directed rewriting for equations, proof strategies spend
most of their time building the proof. Apart from guessing witnesses, which
involves investigating a small set of alternative choices, there is virtually no
backtracking involved and the bulk of the development is completely deter-
ministic, being driven by typing considerations.

– Proofs that are considered trivial from an intellectual point of view are in
fact trivial in the sense that a computer program can find them without
having to rely on sophisticated heuristics.

For the future, we plan to gain more experience by attempting to automate more
of the basic theory. We need more experience with the different types of argu-
ments that arise in category theory so that we will be better able to automate
proofs that require witnesses for existential quantifiers. We believe that our cal-
culus for witness construction will be useful beyond proofs of isomorphisms, as
the most obvious solution for a problem in category theory is often the “simplest”
element of the given type, which is exactly what the strategy generates. In the
same way our calculus of constructor functors should be useful beyond proofs of
natural isomorphisms, as it provides functors and natural transformations that
come naturally with a given category.

To improve both the efficiency of a proof search and the readability of the
constructed proofs we also plan to introduce higher levels of reasoning that
compose theorems about general category-theoretical arguments instead of only
applying basic inference rules. This form of compositional reasoning has proven
successful in the formal optimization of communication systems [LK+99], where
we could reduce a huge amount of basic inference steps to a proof that could be
constructed in a few seconds.

Finally, we would like to mention an intriguing theoretical open problem.
The proofs of natural isomorphisms between two categories C1 and C2 that we
have described break down into two parts. The first part argues that C1 and
C2 are isomorphic, and the second part argues that the isomorphism is natural.
As Mac Lane describes it [McL71, p. 2], naturality, applied to a parameterized
construction, says that the construction is carried out “in the same way” for all
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instantiations of the parameters. Of course, there is a formal definition of the
concept of naturality in category theory itself, and it involves re-parameterizing
the result in terms of functors in place of objects, natural transformations in
place of arrows. But any constructions in the formal proof π of the first part of
the theorem, just the isomorphism of the two parameterized functor categories,
would work “in the same way” for all instantiations of the parameters, by virtue
of the fact that the formal proof π is similarly parameterized. In fact, our proof
strategy based on the calculus of constructor functors has attempted exactly
that and succeeded in proving an isomorphism to be natural in each case where
we could prove two categories to be isomorphic.

This leads us to ask: Under what conditions can one extract a proof of natu-
rality automatically from π? That is, under what conditions can a proof in our
formal system be automatically retooled to additionally establish the natural-
ity of the constructions involved? Extracting naturality in this way would be
somewhat analogous to the extraction of programs from proofs according to the
Curry–Howard isomorphism. We believe that extracting naturality is possible at
least for categories that can be described in terms of constructor functors, as this
leads immediately to the domains and codomains of the natural transformations
θ and η between the two categories while θ and η are constructed in the same
way as in the proof the isomorphism between C1 and C2. But a formal proof of
this conjecture still needs to be given.

Acknowledgements. We thank Dexter Kozen for introducing us to the topic
of implementing and automating elementary category theory and for explaining
the informal reasoning patterns behind the proof in [Koz04].
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Abstract. Streams are omnipresent in both mathematics and theoret-
ical computer science. Automatic sequences form a particularly inter-
esting class of streams that live in both worlds at the same time: they
are defined in terms of finite automata, which are basic computational
structures in computer science; and they appear in mathematics in many
different ways, for instance in number theory. Examples of automatic
sequences include the celebrated Thue-Morse sequence and the Rudin-
Shapiro sequence. In this paper, we apply the coalgebraic perspective on
streams to automatic sequences. We show that the set of automatic se-
quences carries a final coalgebra structure, consisting of the operations of
head, even, and odd. This will allow us to show that automatic sequences
are to (general) streams what rational languages are to (arbitrary) lan-
guages.

With all our best wishes to Dexter Kozen, on the occasion of his 60th birthday.

1 Introduction

The set of infinite sequences, or streams, over an alphabet A is defined by

Aω = {σ | σ : N→ A}
In universal coalgebra [Rut00], which is a general theory of the behaviour of
dynamical systems and infinite data types, the set of streams is the prototypical
example of a final coalgebra much in the same way as in universal algebra the
set of natural numbers is the typical example of an initial algebra. The (final)
coalgebra structure of Aω is given by the isomorphism

Aω → A×Aω σ �→ (σ(0), σ′)

which maps a stream σ to the pair consisting of its head or initial value σ(0),
and its tail or stream derivative σ′, which is defined by

σ′ = (σ(1), σ(2), σ(3), . . .)

This elementary structure on Aω gives rise to a surprisingly powerful collection
of definition and proof methods that are based on the finality of the stream
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coalgebra (Aω, ( )(0), ( )′), ie, based on the fact that from any other coalgebra
of the same type there is exactly one coalgebraic morphism into the stream
coalgebra.

For instance, in so-called stream calculus [Rut05], one defines streams by
means of stream differential equations, in close analogy to classical calculus in
mathematics. Examples are

σ′ = 3× σ σ(0) = 1

(with 3× σ = (3 · σ(0), 3 · σ(1), 3 · σ(2), . . .)), which can be easily seen to define
the stream (30, 31, 32, 33, . . .); and

σ′ = σ × σ σ(0) = 1

(where in this case × stands for convolution product), which defines the stream
(1, 1, 2, 5, 14, . . .) of the so-called Catalan numbers. Furthermore, stream calculus
comes along with a proof principle called coinduction, by which two streams can
be shown to be equal by the construction of a suitable {head, tail}-bisimulation
relation.

Streams are omnipresent in both mathematics and theoretical computer sci-
ence. Automatic sequences [Fog02, AS03] form a particularly interesting class
of streams that live in both worlds at the same time: they are defined in terms
of finite automata, which are basic computational structures in computer sci-
ence; and they appear in mathematics in many different ways, for instance in
number theory. We will see a formal definition later but, in a nutshell, a stream
is (2-)automatic if its n-th value is obtained by feeding the binary encoding
of the number n into a Moore machine, and reading off the output value of
the state thus reached. Examples of automatic sequences include the celebrated
Thue-Morse sequence and the Rudin-Shapiro sequence.

In this paper, we set out to apply the coalgebraic perspective on streams to
automatic sequences. As it happens, we shall not be using the aforementioned
stream calculus, which is based on the standard final coalgebra structure of head
and tail that we saw above. Instead, we will use a stream calculus that could
be called non-standard because it is based on a different coalgebra structure on
streams, which was recently introduced in [KR10]. This coalgebra structure is
defined by

〈head, (even, odd)〉 : Aω → A× (Aω)2

where head(σ) = σ(0) ∈ A is again the initial value of σ and where

even(σ) = (σ(0), σ(2), σ(4), . . .) odd(σ) = (σ(1), σ(3), σ(5), . . .)

As we shall see, the coalgebra (Aω, 〈head, (even, odd)〉) is final among (a sub-
class of) the coalgebras of type S → A × S2. Such coalgebras are known in
the literature as 2-automata (with outputs in A); they are also called Moore
machines.

The above final coalgebra structure on Aω gives rise to a new type of stream
calculus, in which streams can be defined by so-called {head, even, odd}-stream
differential equations. For instance,
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head(σ) = 0 even(σ) = zeros odd(σ) = ones

with zeros = (0, 0, 0, . . .) and ones = (1, 1, 1, . . .) defines the stream

σ = (0, 1, 0, 1, 0, 1, . . .).

Another, less trivial example is

head(M) = 0 even(M) = M odd(M) = N

head(N) = 1 even(N) = N odd(N) = M

which is a system of two equations that has the Thue-Morse sequence M (and
its complement N) as its unique solution. The Thue-Morse sequence has the
property that M(i) = 0 iff the number of 1’s in the binary representation of
i is even and that M(i) = 1 otherwise, ie, M = 01101001 . . . - for more de-
tailed information about this sequence and its properties the reader is referred
to [AS03].

As we shall demonstrate, the relevance of the above non-standard stream
calculus for the theory of automatic sequences lies in the following observations:

- the definition of automatic sequences by finite automata becomes a universal
construction, by the finality of Aω mentioned above;

- a stream σ is automatic iff the subcoalgebra [σ] of the final coalgebra Aω ,
obtained by repeatedly applying the operations of odd and even, is finite
(much in the same way as a formal language L is regular iff the subcoalgebra
it generates in the final coalgebra 2A

∗
of all formal languages is finite);

- the size of this generated subcoalgebra gives us a well-defined notion of
minimal representation for automatic sequences;

- the set of all automatic sequences is final among (a subclass of) all finitely-
generated 2-automata;

- a sequence is automatic if and only if it can be defined by a finite system of
{head, even, odd}-stream differential equations;

- equality of automatic sequences can be proved by coinduction, employing
{head, even, odd}-bisimulation relations;

- a more liberal use of non-standard stream differential equations leads to
potentially interesting extensions of the set of automatic sequences, similar
to the way in which context-free languages extend regular languages.

2 Streams and Automata

Let A be an arbitrary set and let 2 = {0, 1}. A 2-automaton with outputs in A
is a pair (S, 〈o, n〉) consisting of a (finite or infinite) set S of states and a pair of
functions

〈o, n〉 : S → A× S2

assigning to each state s ∈ S its output o(s) ∈ A and, for each input i ∈ 2,
a next state n(s)(i) ∈ S. (Equivalently, 2-automata are coalgebras of the set-
functor F (X) = A×X2.)
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Note that every state s has two successor states, n(s)(0) and n(s)(1), which
we shall sometimes call the 0-derivative and the 1-derivative of s, and which we
often denote by

s0 = n(s)(0) s1 = n(s)(1)

The notion of derivative can be generalised to binary words as usual.

Definition 1. For a state s ∈ S in a 2-automaton (S, 〈o, n〉) and for w ∈ 2∗,
we define the w-derivative sw of s by

sε = s sw·b = n(sw)(b)

where ε is the empty word and b ∈ 2. �

In other words, the w-derivative sw of some automaton state s is the state
that the automaton reaches when starting at state s and reading word w. As
usual, automata can be conveniently represented by pictures, in which we denote
outputs by

s|a ⇐⇒ o(s) = a

and successor states by labeled arrows:

s
0 �� s0 s

1 �� s1

Using these conventions, here is an example of a 2-automaton with outputs in
A = {a, b}:

s|a
1

��
0

�� t|b
1

��

0

��

This picture represents an automaton with S = {s, t}; with outputs o(s) = a
and o(t) = b; and with derivatives (that is, successor states) s0 = s = t1 and
s1 = t = t0.

As we already saw in the introduction, the set of streams over A forms a
2-automaton

〈head, (even, odd)〉 : Aω → A× (Aω)2 (1)

given by head(σ) = σ(0) ∈ A and by

even(σ) = (σ(0), σ(2), σ(4), . . .) odd(σ) = (σ(1), σ(3), σ(5), . . .)

In line with the conventions for 2-automata introduced above, we shall often
write

σ0 = even(σ) σ1 = odd(σ)

Applying Definition 1 to the automaton of streams then gives us word derivatives
of streams, which will play a crucial role later. For instance,

σ011 = odd ◦ odd ◦ even(σ) = (σ(6), σ(14), σ(22), . . .)
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Because even(σ) = (σ(0), σ(2), σ(4), . . .), the output values of σ and its 0-
derivative σ0 are always the same:

head(σ) = σ(0) = head(even(σ)) = head(σ0)

Definition 2 (zero-consistency). More generally, a 2-automaton (S, 〈o, n〉)
is called zero-consistent if o(n(s)(0)) = o(s). �

For another interesting (but not zero-consistent) 2-automaton, we consider the
set

A2∗ = {L | L : 2∗ → A}
of all A-weighted languages over 2, together with output and transition functions

〈o, n〉 : A2∗ → A× (A2∗)2 (2)

given, for any L : 2∗ → A, by o(L) = L(ε) and by n(L)(i) = Li with

Li(w) = L(i · w)

for i ∈ 2 and w ∈ 2∗. (As an aside, we note that A-weighted languages over 2
can also be viewed as binary trees with (node) labels in A.)

3 Finality

We shall show that the automaton of all A-weighted languages is final in the
family (the category) of all 2-automata. This observation is an instance of a
well-known, more general characterisation of the final coalgebra for (Mealy and)
Moore machines with arbitrary inputs and outputs. Next we will show that
the automaton of all streams is final in the family (the subcategory) of all zero-
consistent 2-automata. This fact is much less well-known and was recently proved
in [KR10], building on earlier work by Rosu [Ros00]. The main contribution of
the present paper, in Section 4, will be a new definition and characterisation of
automatic sequences, based on the finality of the 2-automaton of streams.

We begin by recalling some basic notions from universal coalgebra [Rut00]. A
homomorphism from a 2-automaton (S, 〈oS , tS〉) to a 2-automaton (T, 〈oT , nT 〉)
is a function f : S → T such that for all s ∈ S,

oT (f(s)) = oS(s) and f(s)0 = f(s0), f(s)1 = f(s1)

Equivalently, f is a homomorphism if it makes the following diagram commute:

S

〈oS ,nS〉
��

f �� T

〈oT ,nT 〉
��

A× S2

1A×f2

�� A× T 2

Here 1A is the identity map onA and f2 : S2 → T 2 sends (s0, s1) to (f(s0), f(s1)).
Using the notion of homomorphism, we can formulate the following universal

property of the automaton of languages.



154 C. Kupke and J.J.M.M. Rutten

Theorem 3 (finality of weighted languages). The 2-automaton of A-weigh-
ted languages defined in equation (2) is final in the family of all 2-automata. That
is, for every 2-automaton (S, 〈oS , nS〉) there exists a unique homomorphism into
the automaton (A2∗ , 〈o, n〉):

S

〈oS,nS〉

��

∃! l ��������� A2∗

〈o,n〉
��

A× S2

1A×l2
�� A× (A2∗)2

Proof. We define l : S → A2∗ , for s ∈ S and w ∈ 2∗, by

l(s)(w) = oS(sw)

One can easily show that this turns l into a homomorphism and that this is the
only way to do it. �

Next we turn to the automaton of streams, more important for the purposes of
this paper. First we define the binary representation of the natural numbers

bin : N→ 2∗

by bin(0) = ε, the empty word, and further, as usual, by

bin(1) = 1 bin(2) = 01 bin(3) = 11 bin(4) = 001

and so on (least significant digit first). We have the following useful property.

Lemma 4. For σ ∈ Aω and n ≥ 0: σ(n) = σbin(n)(0). �

For instance, σ(6) = σbin(6)(0) = σ011(0) = (odd ◦ odd ◦ even(σ))(0).
We just saw that the automaton of all weighted languages is final among all

2-automata. Next we show that the automaton of streams if final among all
zero-consistent 2-automata.

Theorem 5 (finality of automaton of streams). For every zero-consistent
2-automaton (S, 〈oS , nS〉) there exists a unique homomorphism into the automa-
ton (Aω , 〈head, (even, odd)〉):

S

〈oS ,nS〉
��

∃!h ��������� Aω

〈head,(even,odd)〉
��

A× S2

1A×h2

�� A× (Aω)2

Proof. We define h : S → Aω, for s ∈ S and n ≥ 0, by

h(s)(n) = oS(sbin(n))

Using Lemma 4, one can show that this is the only possible definition ensuring
that h is a homomorphism. �
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4 Automatic Sequences

We can now use the finality of the automaton of streams to give our definition
of automatic sequence. We need another definition first.

Definition 6 (Streams and Automata). We say that a stream σ ∈ Aω

is generated by a state s of a (finite or infinite) zero-consistent 2-automaton
(S, 〈o, n〉) if σ = h(s), where h : S → Aω is the (by finality unique) homomor-
phism of Theorem 5. �

Automatic sequences are precisely those sequences that can be generated by a
state of a finite automaton, ie, an automaton with a finite number of states.

Definition 7 (automatic). We call a stream σ ∈ Aω automatic if it is gener-
ated by a finite zero-consistent 2-automaton. �

We can also characterise automatic sequences in terms of subautomata, which
we introduce next. For a state s ∈ S in a 2-automaton (S, 〈oS , nS〉), we define
the subautomaton induced by s as the smallest set [s] ⊆ S such that:

s ∈ [s] and ∀t ∈ [s] : t0 ∈ [s] and t1 ∈ [s]

and with outputs and transitions as in S.

Theorem 8 (Automatic Sequences and Subautomata). For a stream σ ∈
Aω, the following are equivalent:

(i) σ is automatic.
(ii) The subautomaton [σ] ⊆ Aω induced by σ is finite.
(iii) σ has only finitely many derivatives.

Proof. The equivalence of (i) and (ii) follows from elementary universal coalgebra
[Rut00]: (ii) implies (i) because the inclusion of a subautomaton into a bigger
automaton is always a homomorphism; and (i) implies (ii) because the image
of a subautomaton under a homomorphism is always a subautomaton or, more
specifically: h([s]) = [h(s)]. The equivalence of (ii) and (iii) follows from the
definition of subautomaton. �

By this theorem, we have a very precise correspondence between automatic se-
quences and regular languages, namely:

automatic sequences

all streams
=

regular languages

all languages

Let us explain. According to Theorem 8 above, a stream σ (over A) is automatic
if and only if the subautomaton [σ] induced by σ in the final coalgebra Aω of all
streams is finite or, equivalently, if σ has only finitely many derivatives. There
is the following similar fact for languages [Con71, Rut98]: a language L (over an
alphabet A) is regular if and only if the subautomaton [L] induced by L in the
final coalgebra 2A

∗
of all languages is finite or, equivalently, if L has only finitely

many input derivatives.
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Discussion

In the remainder of this section, we briefly discuss how our definition of auto-
maticity is related to the existing classical notion(s) in the literature. None of
this will play a role in the following sections.

Definition 7 is (almost) equivalent to the following definition [Fog02, page 13]:
an infinite sequence (stream) is 2-automatic if it is generated by a 2-automaton in
reverse reading (reading the least significant digit of the binary representation
of the natural numbers first). Without spelling out the details of this latter
definition, it is almost the same as ours.

We say almost because in the classical definition, 2-automata are not required
to be zero-consistent. So our present definition might seem more restrictive but
it is not. We illustrate this by means of a simple example, omitting the not
particularly instructive proof that this holds in general. Let us consider the
following example of a 2-automaton with outputs in A = {0, 1}:

s|0
0

��
1

�� t|1
0

��

1

��

We note that it is not zero-consistent since the output of s is 0 and the output
of s0 = t is 1. However, it can be transformed into the following four state
zero-consistent automaton:

s|0
0

��
1

�� t̂|0
0

��

1

��
ŝ|1

0

��

1

		

t|1
0

��

1





which is equivalent to the original automaton in the following sense: One can
easily show that the stream generated in reverse reading by this latter automaton
(starting in ŝ) is the same as the stream generated in reverse reading by the
original automaton (starting in s).

Then there exists yet another classical definition of automaticity, in which
a stream is generated while reading the most significant digit of the binary
representation of the natural numbers first. Such a stream is said to be generated
in direct reading. It has been shown ([Fog02, Proposition 1.3.4.], [AS03, Theorem
5.2.3]) that automaticity in reverse reading and in direct reading are equivalent.

Finally, our Theorem 8 above is also known, be it somewhat implicitly, in the
literature, where our (ii) is phrased in terms of 2-kernels; see [Fog02, Proposition
1.3.3.] and [AS03, Theorem 6.6.2] for details.
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5 Non-automatic Sequences

Theorem 8 gives us a convenient criterion to decide whether a stream is auto-
matic or not.

For a first example, let us look at the characteristic stream of powers of 2:

τ = (0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, . . .)

Using elementary stream calculus [Rut05], with X = (0, 1, 0, 0, . . .), convolution
product as multiplication and element-wise addition as sum, we can write τ as

τ = X20 + X21 + X22 + X23 + · · ·
= X +X2 +X4 +X8 + · · ·

(Equivalently, this can be viewed as a power series representation of τ in the
formal variable X .) Computing the (repeated) derivatives of τ gives

τ0 = τ τ1 = one one0 = one one1 = zeros zeros0 = zeros = zeros1

where one = (1, 0, 0, . . .) and zeros = (0, 0, 0, . . .). Thus we see that τ is generated
by the following finite automaton

τ |0 1 ��

0

�� one|1 1 ��

0

��
zeros|0

0,1

��

By Theorem 8, we conclude that τ is automatic.
For a second example, we consider the characteristic sequence of squares

ρ = (1, 1, 0, 0, 1, 0, 0, 0, 0, 1, . . .)

or, equivalently,

ρ = X02 + X12 + X22 + X32 + · · ·
= 1 +X +X4 +X9 + · · ·

In order to decide whether ρ is automatic or not, we investigate its derivatives.
Since

ρ0 = 1 +X2 +X8 +X18 +X32 +X50 +X72 + · · ·
it follows that ρ00 = ρ and ρ01 = zeros. Next we compute

ρ1 = 1 +X4 +X12 +X24 +X40 + · · ·
ρ10 = 1 +X2 +X6 +X12 +X20 + · · ·
ρ100 = 1 +X +X3 +X6 +X10 +X15 + · · ·

where we note that the latter stream is pleasantly regular:

ρ100 = X0 +X0+1 +X0+1+2 +X0+1+2+3 +X0+1+2+3+4 +X0+1+2+3+4+5 + · · ·
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Next we can easily prove by induction that the first non-zero coefficient of X of
the subsequent zero derivatives satisfies, for all n ≥ 1,

ρ10n+1 = 1 +X2n−1 + · · ·
Thus all these streams are different. By Theorem 8, we have that ρ is not au-
tomatic. The reader is invited to compare this proof with that of [AS03, page
167], which is somewhat ad hoc and which is based on the pumping lemma for
formal languages.

6 Coinduction (Definitions)

In coalgebra, the property of being final gives rise to both a method for defin-
ing and a method for proving equality (of the elements of the final coalgebra).
Such definitions and proofs are often called coinductive or: by coinduction. In
the present section, we shall sketch how coinductive definitions looks like for
(automatic) streams. The next section will deal with coinductive proofs.

Coinductive definitions of streams are given by {head, even, odd}-stream dif-
ferential equations. As an example, we consider the Thue-Morse sequence and
its inverse, which we already saw in the introduction. Let the streams M,N ∈ 2ω

be defined by the following equations:

head(M) = 0 even(M) = M odd(M) = N (3)

head(N) = 1 even(N) = N odd(N) = M

We mentioned in the introduction that this system of two differential equations
has the Thue-Morse sequence M and its complement N as its unique solution.
But how do we know that the system has a solution at all and that this solution
is moreover unique?

The affirmative answer is given by finality. We use the differential equations
to define a zero-consistent 2-automaton S as follows: let S = {m,n} and let
outputs (in A = 2) and transitions be given by the following picture:

m|0
1

��
0

 n|1
1

��

0

��

By finality Theorem 5, there exists a unique homomorphism h : S → 2ω which
we use to define

M = h(m) N = h(n)

It is now straightforward to show that the streams M and N are solutions of,
that is, satisfy the differential equations above. Computing their first elements
gives

M = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .)

N = (1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, . . .)
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Moreover, because every pair of solutions of our differential equations will give
rise to a homomorphism from S to 2ω, the unicity of h implies that M and N are
the unique solutions. Finally, because S is finite both M and N are automatic.

More generally, we call a finite system of {head, even, odd}-stream differential
equations simple if it is of the following form:

head(x1) = a1 even(x1) = y1 odd(x1) = z1

· · ·
head(xn) = an even(xn) = yn odd(xn) = zn

where X = {x1, . . . , xn} is the set of unknowns, for some n ≥ 1; and where
ai ∈ A, yi ∈ X and zi ∈ X , for all 1 ≤ i ≤ n. We call such a simple system
zero-consistent if head(yi) = head(xi), for all 1 ≤ i ≤ n.

Theorem 9 (simple systems of differential equations). A stream σ ∈
Aω is automatic iff it is the solution of a simple zero-consistent system of
{head, even, odd}-stream differential equations.

Proof. The proof essentially consists of the observation that simple zero-consistent
systems of {head, even, odd}-stream differential equations are in one-to-one cor-
respondence to finite zero-consistent 2-automata. �

We refer the reader to [KR10] for a description of some more general well-defined
classes of {head, even, odd}-stream differential equations.

Next we illustrate that one can use {head, even, odd}-stream differential equa-
tions also to define functions on streams. For instance, we can define the function

inv : 2ω → 2ω

which replaces 0’s by 1’s and 1’s by 0’s, by the following equations:

inv(σ)(0) = 1− σ(0) inv(σ)0 = inv(σ0) inv(σ)1 = inv(σ1) (4)

where we now write −(0) for head(−) and where we use subscripts 0 and 1 to
denote the operations of even and odd. The example is simple enough to see at
once that there exists precisely one function satisfying these equations. Formally,
a proof can be based as before on the finality of streams: we define an (infinite)
2-automaton (T, 〈o, n〉) by

T = 2ω

with observations and transitions

o(σ) = 1− σ(0) n(σ)(0) = σ0 n(σ)(1) = σ1

We note that this automaton is zero-consistent: for all σ ∈ 2∗,

(n(σ)(0))(0) = (σ0)(0) = (even(σ))(0) = σ(0)
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Hence there exists, by finality, a unique homomorphism h : T → 2ω, which we
use to define the function inv = h. It is easy to check that this function is a
solution of the differential equation that we started with, and that it is the only
solution.

Although the defining automaton T for inv is infinite, there still is a connection
with automaticity. Namely, if σ is an automatic stream then so is inv(σ). Using
Theorem 8, a proof is easy: if σ is automatic, it has only finitely many (0- and
1-) derivatives. This implies that (both cσ and) inv(σ) has only finitely many
derivatives. Which implies, again by Theorem 8, that inv(σ) is automatic.

Here is an example where the right-hand sides of the equations are no longer
simple but may involve the use of stream functions. Recalling the (trivial) def-
initions of the streams zeros = (0, 0, 0, . . .) and ones = (1, 1, 1, . . .) from the
introduction:

zeros(0) = 0 zeros0 = zeros zeros1 = zeros

ones(0) = 1 ones0 = ones ones1 = ones

and using the function inv introduced above, we consider the following differential
equation:

T (0) = 1 T0 = ones T1 = inv(T )

which defines the so-called Toeplitz sequence. The equation can be shown to
have a unique solution in a similar fashion to the examples above, by deriving
from the defining differential equations for T , ones and inv a 2-automaton of the
following shape:

ones|1

0,1

��
T |1

1
��

0
�� inv(T )|0

1

��
0 �� zeros|0

0,1

��

(Here we have used the facts that inv(ones) = zeros and that inv(inv(σ)) = σ, for
all σ. These facts are elementary and can be formally proved by the coinduction
proof technique of Section 7.) We note hat T is automatic, since the automaton
above is finite.

Another famous example of an automatic sequence (over the set A = {1,−1})
is the Regular Paperfolding Sequence R, which we define here by the following
differential equation:

R(0) = 1 R0 = U R1 = R

Here U is a stream defined by

U(0) = 1 U0 = ones U1 = −ones
and minus is defined as expected, ie. −σ = (−σ(0),−σ(1),−σ(2), . . .). Again the
existence of a unique solution of the equations for R and U above can be proved
by finality, by the construction of an automaton of the shape
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ones|1
0,1

��

R|1 0 ��

1

 U |1

0
��

1 �� −ones| − 1

0,1

��

This is a zero-consistent finite 2-automaton, so both R and U are automatic.
Here is yet another example of a coinductive definition of a function on

streams. Assuming that A has a binary operation · of multiplication, we de-
fine the so-called Hadamard product σ � τ , for all streams σ, τ ∈ Aω , by

(σ � τ)(0) = σ(0) · τ(0) (σ � τ)0 = σ0 � τ0 (σ � τ)1 = σ1 � τ1
The product stream σ � τ consists of the elementwise products in A of the
elements of σ and τ . We note that the Hadamard product preserves automaticity:
if both σ and τ have only finitely many derivatives then so does σ � τ .

7 Coinduction (Proofs)

A bisimulation between two given zero-consistent 2-automata (S, 〈oS , tS〉) and
(T, 〈oT , nT 〉) is a relation R ⊆ S × T such that for all (s, t) ∈ S × T

(s, t) ∈ R⇒
{
oS(s) = oT (t) and

(si, ti) ∈ R i = 1, 2

(where, as before, si = nS(s)(i) and ti = nT (t)(i)).
Equivalently,R ⊆ S×T is a bisimulation if it can be turned into a 2-automaton

(R, 〈o, n〉) such that the projections l : R→ S and r : R→ T (which are defined
by l((s, t)) = s and r((s, t)) = t) are homomorphisms:

S

〈oS,nS〉
��

R

〈o,n〉
��

l�� r �� T

〈oT ,nT 〉
��

A× S2 A×R2

1A×l2
��

1A×r2
�� A× T 2

There is the following powerful proof principle for streams.

Theorem 10 (Coinduction Proof Principle). For any bisimulation relation
R ⊆ Aω × Aω on the automaton (Aω , 〈head, (even, odd)〉) of streams, we have,
for all σ, τ ∈ Aω,

if (σ, τ) ∈ R then σ = τ
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Proof. By the finality of Aω and the definition of bisimulation, the projections
l, r : R→ Aω are equal. As a consequence, σ = τ for all (σ, τ) ∈ R. �

Thus in order to show the equality of two streams, it suffices to construct a
bisimulation relation that contains the pair of those streams. For a first example,
we consider the function zip : Aω × Aω → Aω defined, for all σ, τ ∈ Aω, by the
following stream differential equation:

zip(σ, τ)(0) = σ(0) zip(σ, τ)0 = σ zip(σ, τ)1 = τ

As the name suggests, this function satisfies

zip(σ, τ) = (σ(0), τ(0), σ(1), τ(1), . . .)

We have the following trivial identity, for all σ ∈ Aω:

zip(σ0, σ1) = σ (5)

It can be viewed as a kind of fundamental theorem of {head, even, odd}-stream
calculus, in that it enables one to compute σ from its derivatives.

Equality (5) follows by coinduction Theorem 10 from the fact that the follow-
ing relation R ⊆ Aω ×Aω is a bisimulation:

R = {(zip(σ0, σ1), σ) | σ ∈ Aω} ∪ {(σ, σ) | σ ∈ Aω}

For another example of coinduction, we prove the following equality:

M = zip(M, inv(M))

where M is the Thue-Morse sequence defined in equation (3) and where inv is
defined in equation (4). For a proof by coinduction, we define a relation U ⊆
2ω × 2ω consisting of the following four pairs:

U = { (M, zip(M, inv(M))), (M,M), (M, inv(N)), (N, inv(M)) }

It is easy to check that U is a bisimulation. Thus M = zip(M, inv(M)) follows
by coinduction Theorem 10.

8 Discussion

Conclusion: We have given a new perspective on automatic sequences, by defin-
ing them with a universal construction from coalgebra: finality. We have shown
that our new definition is equivalent to (one of) the classical definition(s), thereby
illustrating that the latter is in a precise sense universal. (Although we have
talked about 2-automatic sequences only, everything can be easily adapted for
k-automatic sequences, for arbitrary k.) Using our new definition, we have shown
that a stream is automatic if and only if it has only finitely many (even and odd)
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derivatives (Theorem 8). This characterisation offers an equivalent but conve-
nient alternative to the more classical use of 2-kernels, as was illustrated by the
examples in Section 5.

We also saw that a stream σ has only finitely many derivatives if and only if
it generates a finite subautomaton [σ] ⊆ Aω. As a consequence, we can take the
size of this subautomaton [σ] as a well-defined notion of minimal representation
for automatic sequences.

Further we have shown that a stream is automatic if and only if it can be
defined by means of a simple zero-consistent system of {head, even, odd}-stream
differential equations (Theorem 9). As we have seen, such equations can be used
also to define functions on streams, allowing one to give easy proofs that certain
functions preserve automaticity.

Related work: Our knowledge about automatic sequences is based on the afore-
mentioned [Fog02] and [AS03], which offer a rich body of results on automatic
sequences and their applications. It goes without saying that in the present pa-
per, we have dealt with only a very small part thereof. We have explained above
what might be seen as our contribution to the field of automatic sequences: a
new, universal perspective on the definition of automatic sequence and, related
to that, a characterisation of automaticity in terms of (even and odd) derivatives.

All the technical results of our paper are already contained in our earlier
[KR10], or have been derived from there using some elementary universal coal-
gebra [Rut00]. What is really new is the observation that being generated by
a finite 2-automaton (Definition 6) is equivalent to (the classical definition of)
being 2-automatic. This observation is in itself trivial but making it gave us a
kind of aha-erlebnis. And, once made, it opened the way of applying our earlier
results.

Apparently, some of these insights were already in the air. After a recent
presentation of our work at the COIN (Coalgebra in the Netherlands) seminar,
we were told of ongoing research by Endrullis, Grabmayer, Hendriks, Klop and
Moss [EGH+11], in which some related facts have been independently established
(though not in a coalgebraic framework).

Further research: We see several perspectives for further research. It would be
interesting to investigate more liberal formats of stream differential equations
than the simple systems we have considered ([KR10] contains already some first
attempts). This could lead to potentially interesting extensions of the set of
automatic sequences, similar to the way in which context-free languages extend
regular languages.

Given the parallel between regular languages and automatic sequences, as
sketched in Section 4, we intend to investigate possible definitions of what could
be called languages of automatic expressions, and a corresponding theorem in the
style of Kleene. Clearly the use of the operation of zip offers a way to translate
{head, even, odd}-stream differential equations into closed expressions, but we
would also be interested in operations such as (a variant on) the Kleene star or
maybe some fixed point operator.
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Finally, given the well-established correspondence between coalgebra and
(modal) logic, it might be worthwhile to design new logics for reasoning about
automatic sequences and their properties.
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Abstract. We identify the class of Σ1
1–inductive sets studied by

Moschovakis as a set theoretical generalization of the class (1, 3) of
the Rabin-Mostowski index hierarchy of alternating automata on infi-
nite trees. That is, we show that every tree language recognized by an
alternating automaton of index (1, 3) is Σ1

1–inductive, and exhibit an
automaton whose language is complete in this class w.r.t. continuous
reductions.

Classification. F.1.1 Models of Computation,F.4.1 Mathematical Logic,
F.4.3 Formal Languages.

Keywords: Alternating automata on infinite trees, Index hierarchy, Sep-
aration property.

1 Introduction

A common feature of computational complexity theory, recursion theory, au-
tomata theory, or descriptive set theory, is that they organize their realms into
various hierarchies according to their sense of complexity. The complexity levels
are usually understood through some concrete examples, genuine to a complexity
level. For instance, the complexity class NL is understood through the problem
of maze, and the topological class Π1

1 through the set of well-founded (infinite)
trees. Of a special interest are examples which separate complexity levels, or are
conjectured to do so. This often involves some concept of completeness , which
is also a common feature of the above theories, although the actual reductions
vary from polynomial-time (or log-space) reductions in complexity theory to
continuous reductions in descriptive set theory.

The introduction of the μ-calculus by Kozen [13] (anticipated by the work of
Emerson and Clarke, Pratt, Park, and others, see, e.g., [3] for references) gave
rise to investigation of the hierarchy induced by the alternation of the least (μ)
and greatest (ν) fixed point operators. Bradfield [5] proved that this hierarchy is
strict, giving also [6] a natural family of examples based on parity games [8]. This
model-theoretic result yielded the strictness of another hierarchy, classifying sets
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of (infinite) trees recognizable by finite automata, first considered by Rabin [22].
More specifically, Bradfield proved the strictness of the hierarchy induced by the
Rabin-Mostowski index of alternating automata 1, corresponding level by level
to the hierarchy of the μ-calculus. The witness family consists of the so-called
game tree languages Wι,k, ι ∈ {0, 1}, ι ≤ k (the author [6] credits I.Walukiewicz
for this example). Recall that parity games are played by two players on graphs
with ranked nodes and the winner is determined by the parity of the highest rank
visited infinitely often. The elements of Wι,k can be, roughly, viewed as unfolding
of those arenas where the even player has winning strategy (see Section 2 below).

Unfortunately, although the questions about finite automata are usually decid-
able, no method is known up to date to decide the exact level of a tree language
in the hierarchy, if an automaton is given2. This challenge seems to be related
to the search for a suitable concept of reduction (and completeness) for tree
automata.

On the other hand, infinite trees can be naturally viewed as elements of a
Cantor (topological) space, where the concept of continuous reduction is avail-
able and several hierarchies are well understood. In order to take advantage of
this page of mathematics, we need first to accurately place tree automata into
the realm of descriptive set theory.

Finite-state recognizable sets of infinite words were classified already by
Landweber [14, Corollary 3.6] as Boolean combinations of Fσ sets (see also [27]).
Finite automata on trees are more interesting from this perspective. They recog-
nize some Borel sets on any finite level [24], as well as some non-Borel sets [20],
although by definition cannot go beyond Δ1

2. It was observed by Arnold [1] that
the game tree languages Wι,k are complete on the subsequent levels of the al-
ternating hierarchy w.r.t. the Wadge (i.e., continuous) reductions; on the other
hand they form themselves a Wadge hierarchy [4].

The low classes of the index hierarchy are comparable to the analytic (Σ1
1)

and co-analytic classes in projective hierarchies. Rabin [23] proved that (in our
current terminology) the level (1, 2) of the index hierarchy, corresponding to the
νμ level in the μ-calculus, is definable in the existential fragment of S2S, and
consequently is included in the class Σ1

1. By symmetry, the level (0, 1) is included
in Π1

1. On the other hand, there are recognizable sets of trees of levels (0, 1) and
(1, 2) complete in the classes Π1

1 and Σ1
1, respectively, w.r.t. the continuous

reductions [20]; in particular W0,1 and W1,2 have this property. It is natural
to ask if the subsequent levels of the hierarchy do also enjoy some meaningful
topological extensions.

In this paper, we show that the class of Σ1
1–inductive sets forms such an

extension for the level (1, 3) of the index hierarchy, corresponding to the level
μνμ in the μ-calculus. The Σ1

1–inductive sets are those that can be obtained
as the least fixed points of the monotone Σ1

1–definable operators. The concept
was analyzed by Moschovakis [15,16], in the frame of a more general question
how the complexity of a fixed point μX.F (X) depends on that of an operator F .

1 For non-deterministic automata, the result was proved earlier [18].
2 An algorithm is known only in the case if a given automaton is deterministic [19].
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This question can be traced back to Kleene’s observation that the least fixed
points of monotone Σ0

1 -operators remain Σ0
1 , whereas the least fixed points of

monotone Π0
1 -operators subsume the class Π1

1 (see Chapter III of [10] and refer-
ences there).

We verify that the game tree language W1,3 is Σ1
1–inductive, and then show

that it is actually complete among all Σ1
1–inductive sets, by a reduction from the

set of quasi bounded trees invented by Saint Raymond [25]. By the completeness
of W1,3 on the level (1, 3) [1], it implies that every tree language recognized
by an alternating automaton of index (1, 3) is Σ1

1–inductive. We terminate by
providing a game characterization of the class of Σ1

1–inductive sets, in which we
explore the aforementioned completeness of W1,3.

A similar characterization of all the levels of the μ-calculus hierarchy in terms
of game quantifiers has been established by Bradfield [7] for fixed-point defin-
able sets of natural numbers. It possibly can be adapted to sets of trees, if an
appropriate extension of the concept of Σ1

1–inductive sets is made.

2 Index Hierarchy

Notation. Throughout the paper, ω stands for the set of natural numbers, which
we identify with its ordinal type. We also identify a natural number n < ω with
the set {0, 1, . . . , n− 1}.

The concept of alternating automaton (see [27]) is best presentable via games.
A parity game is a perfect information game of possibly infinite duration played by
two players, say Eve and Adam. We present it as a tuple (V∃, V∀,Move, p0, rank),
where V∃ and V∀ are (disjoint) sets of positions of Eve and Adam, respectively,
Move ⊆ V × V is the relation of possible moves, with V = V∃ ∪ V∀, p0 ∈ V is
a designated initial position, and rank : V → ω is the ranking function which
admits only a finite number of values.

The players start a play in the position p0 and then move the token according
to relation Move (always to a successor of the current position), thus forming
a path in the directed graph (V,Move). The move is selected by Eve or Adam,
depending on who is the owner of the current position. If a player cannot move,
she/he looses. Otherwise, the result of the play is an infinite path in the graph,
v0, v1, v2, . . . Eve wins the play if lim supn→∞ rank(vn), is even, otherwise Adam
wins. It is known that parity games are positionally determined : one of the players
has a winning strategy which moreover can be made positional , i.e., represented
by a (partial) function σ : V → V [8,17]. We say that Eve wins the game if she
has a winning strategy, the similar for Adam.

A full binary tree over a finite alphabet Σ is a mapping t : 2∗ → Σ. (Recall
that 2 = {0, 1}.) An alternating parity tree automaton running on such trees can
be presented as

A = 〈Σ,Q∃, Q∀, q0, δ, rank〉
where the set of states Q is partitioned into existential states Q∃ and universal
states Q∀, δ ⊆ Q × Σ × {0, 1, ε} × Q is a transition relation, and rank : Q →
ω a rank function. An input tree t is accepted by A iff Eve has a winning
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Fig. 1. The Mostowski–Rabin index hierarchy

strategy in the parity game 〈Q∃ × 2∗, Q∀ × 2∗, (q0, ε),Mov, Ω〉, where Mov =
{((p, v), (q, vd)) : v ∈ dom(t), (p, t(v), d, q) ∈ δ} and Ω(q, v) = rank(q).

We assume without loss of generality that min rank(Q) is 0 or 1. The
Mostowski-Rabin index is the pair (min rank(Q),max rank(Q)). It is useful to
have a partial ordering on indices; it is represented on Figure 1. The idea is that
we let (ι, κ) 	 (ι′, κ′) if either {ι, . . . , κ} ⊆ {ι′, . . . , κ′}, or ι = 0, ι′ = 1, and
{ι+ 2, . . . , κ+ 2} ⊆ {ι′, . . . , κ′}. We consider the indices (1, κ) and (0, κ− 1) as
dual , and let (ι, κ) denote the index dual to (ι, κ).

We recall an example of a witness family used by Bradfield [6] to show that
the hierarchy induced by the indices of alternating parity tree automata is strict.
The family consists of languages Wι,k, ι ∈ {0, 1}, ι ≤ k which are themselves
based on parity games. The alphabet of Wι,k is {∃, ∀} × {ι, ι+ 1, . . . , k}. We let
Tι,k denote the set of all binary trees over this alphabet. With each tree t in Tι,k,
we associate a parity game G(t), with

– V∃ = {v ∈ 2∗ : t(v) ↓1= ∃},
– V∀ = {v ∈ 2∗ : t(v) ↓1= ∀},
– Move = {(w,wi) ∈ 2∗ × 2∗ : w ∈ 2∗, i ∈ {0, 1}},
– p0 = ε (the root of the tree),
– rank(v) = t(v) ↓2, for v ∈ 2∗.

(In the above, α ↓i, i = 1, 2, means the projection on the ith component.) The
set Wι,k consists of those trees for which Eve wins the game G(t).

3 Basic Topological Concepts

All topological spaces under consideration are completely metrizable and sepa-
rable. Let TΣ denote the set of all k–ary trees over a finite alphabet Σ. This set
can be equipped with a metric

d(t1, t2) =

{
0 if t1 = t2
2−n with n = min{|w| : t1(w) = t2(w)} otherwise.

It is well known and easy to see that the topological space induced by this metric
is homeomorphic to the Cantor discontinuum {0, 1}ω. We call a Cantor space
any space homeomorphic with {0, 1}ω.
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The space ωω consists of all sequences of natural numbers. The distance be-
tween two sequences u, v is defined

d(u, v) =

{
0 if u = v
2−n with n = min{m : u(n) = w(n)} otherwise.

For a topological space H, the family of Fσ sets consists of all countable unions
of closed sets in H. Borel sets over H constitute the least family containing open
sets and closed under complement and countable union. The Borel relations
are defined similarly, starting with open relations (i.e., open subsets of Hn, for
some n, considered with product topology). The analytic (or Σ1

1) sets are those
representable by

L = {t ∈ H : (∃t′)R(t, t′)}
where R ⊆ H × H is a Borel relation. The co-analytic (or Π1

1) sets are the
complements of analytic sets. A continuous mapping f : H → H reduces a set
A ⊆ H to B ⊆ H if f−1(B) = A. As in complexity theory, a set L ∈ K is
complete in class K if all sets in this class reduce to it.

4 Σ1
1–Inductiveness — Classical Definition

The original definition of Σ1
1–inductiveness (see [16]) refers to the least fixed

points of the Σ1
1-definable operators and however formally identical to the Def-

inition formulated below, instead of using the constructiveness in the sense of
this paper, that is via arbitrary countable unions, intersections, projections and
game–quantifiers, the book [16] assumes, that all the above mentioned notions
are limited by the assumption of recursiveness. In Set Theory this recursive ap-
proach is called Effective Descriptive Set Theory, and leads to so called lightface
classes of sets, but since recursiveness does not seem to offer at the moment any
benefits to Automata Theory, we use larger and more robust classes from Classi-
cal Descriptive Set Theory, so called boldface classes. The theory of lightface and
boldface classes essentially coincide when it comes to really important results,
but in this article, in order to avoid any confusion, we will introduce all the bold-
face concepts from scratch and will not use any lightface results from [16]. In our
work, we have been much inspired by [25], and our approach to Σ1

1–inductive
sets follows the exposition in [25]. Also, in Section 5 we will use an interesting
combinatorial example from [25] of a set complete in the class of Σ1

1–inductive.
In the definitions below C is a Cantor space and the set I is an arbitrary

countable set of indices with one special element i0 ∈ I. We will assume that
I is equipped with a discrete topology. We will be mostly interested in I = 2�,
i0 = ε and C = TΣ , but for certain applications in the following sections we will
need the more general approach. Let

F : ℘ (I)× C → ℘ (I)
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be a mapping monotone on the first argument w.r.t. the inclusion ordering. Keep-
ing our main example in mind, if t is a tree and I = 2�, we view F (., t) as a
mapping on the sets of nodes of t. We define the sets F ξ(t) by induction on
ordinal ξ.

F 0(t) = ∅
F ξ+1(t) = F

(
F ξ(t), t

)

Fλ(t) =
⋃

ξ<λ

F ξ(t), for limit λ.

Since F is monotone and I is countable, there is a countable ordinal ζ, such that
F ζ+1(t) = F ζ(t), and consequently F ζ(t) = F ξ(t), for all ξ > ζ. We denote this
set by F∞(t). Finally, we let

Ind(F ) = {t ∈ C : i0 ∈ F∞(t)} (1)

and for t ∈ Ind(F ) we define rk(t) as the minimal ordinal ζ such that F ζ+1(t) =
F ζ(t) and for t ∈ Ind(F ) we define rk(t) = ω1.

The complexity of a mapping F is defined in terms of the relation w ∈ F (Y, t).
More specifically, we represent a set Y by its characteristic function χY : I →
{0, 1}, which in turn can be viewed as an element of a Cantor space {0, 1}I.
Definition 1. A set of trees A ⊆ C is Σ1

1–inductive if it can be presented as
A = Ind(F ), for some mapping F : ℘ (I) × C → ℘ (I) (monotone on the first
argument), such that the relation

{(w, χY , t) ∈ I × ℘ (I)× C : w ∈ F (Y, t)}
is Σ1

1.

To show that the set W1,3 is Σ1
1–inductive in the above sense, we have to

present it as Ind(F ), for a suitable operator F , where C = T1,3. For a tree
t ∈ T1,3, a set of nodes Y ⊆ 2∗, and a node w ∈ 2∗, we consider a game
G(t, Y, w) similar to the game G(t) defined on page 168 but with the following
modifications. The initial position is w (rather than ε). Whenever the token
arrives in a node in the set Y , the play stops. Eve wins a play π = (v0, v1, v2, . . .)
(with v0 = w) if

– the label 3 can occur only at the initial position, i.e., t(v0) ↓2∈ {1, 2, 3}, but
t(vi) ↓2∈ {1, 2}, for i ≥ 1,

– either π is finite and ends in Y ,
– or π is infinite and lim supn→∞ t(vn) ↓2= 2.

We let

F (Y, t) = {w ∈ I : Eve has a winning strategy in the game G(t, Y, w)}
Since the winning condition in G(t, Y, w) is similar as in W1,2 (i.e., of Büchi type),
it is straightforward to verify that F satisfies the requirements of Definition 1.
And it is not very difficult to verify that

Ind(F ) = W1,3.
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We will need later the following standard

Lemma 1. If D,C are Cantor spaces, φ : D → C is a continuous mapping
and A ⊆ C is a Σ1

1–inductive set, then the preimage B = φ−1[A] is also a
Σ1

1–inductive set.

Proof. Let
F : ℘ (I)× C → ℘ (I)

be such that A = Ind(F ), where

R = {(w, χY , t) ∈ I × ℘ (I)× C : w ∈ F (Y, t)}
analytic. Define

G : ℘ (I)× C → ℘ (I)

by the formula G(Y, t) = F (Y, φ(t)). Then clearly B = Ind(G). We have to verify
that G is Σ1

1–definable.
Define

ψ : I × ℘ (I)×D → I × ℘ (I)× C
by the formula

ψ(w, χY , t) = (w, χY , φ(t)).

Then
{(w, χY , t) ∈ I × ℘ (I)× C : w ∈ G(Y, t)} =

= {(w, χY , t) ∈ I × ℘ (I)× C : w ∈ F (Y, φ(t))} = ψ−1[R].

Since ψ is a continuous mapping, the preimage of an analytic set R remains
analytic, hence B is Σ1

1–inductive.

From the Lemma and from a result of Arnold [1] that any tree language of level
(ι, k) is continuously reducible to Wι,k, it follows

Corollary 1. Tree languages recognized by alternating automata of index (1, 3)
are Σ1

1–inductive.

5 Completeness via the Quasi–Bounded Trees

We will prove that W1,3 is complete in the class of Σ1
1–inductive sets reducing

to it a set of so-called (unlabeled) quasi-bounded trees, whose completeness has
been established by Saint Raymond [25] directly from the definition. We call a
subset of ω∗ an unlabeled tree if it closed with respect to prefixes. Characteristic
function of an unlabeled tree t belongs to the Cantor space 2ω

∗
and the topology

on the space of unlabeled trees is inherited from the space 2ω
∗
.

A tree t ⊂ ω∗ is cofinal if for every v = (v0, v1, . . .) ∈ ωω there exists a branch
b = (b0, b1, . . .) ∈ [t] such that b ≥ v, that is for every n ∈ ω holds the inequality
bn ≥ vn. We define

QB = {t ⊂ ω∗ : t is a not a cofinal tree}.
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Let ψ be a mapping from 2∗ to ω∗ such that for a given sequence s ∈ 2∗ if
s = 0n010n11 . . . 10nk10l (l ≥ 0) then

ψ(s) = (n0, n1, . . . , nk).

For a given tree t ⊂ ω∗ we define a game Γ (t) such that Player I plays natural
numbers n0, n1, . . . , one number in every round, and Player II answers with
c0, c1, . . . , where cn ∈ {0, 1}. Moreover, Player II is obliged at every step to
preserve the following two conditions

1. if ψ(c0, . . . , ck) has length l ≥ 1, then

ψ(c0, . . . , ck) ≥ (n0, . . . , nl−1).

2. ψ(c0, . . . , ck) ∈ t.
Player II wins if he managed to play infinitely many 1. In [25] one can find the
following characterization

Theorem 1 (J. Saint Raymond). A tree t ⊂ ω<ω is not cofinal if and only
if Player I has a winning strategy in Γ (t).

Using a method of proof from [25, Theorem 3], we will prove the following

Theorem 2. There exists φ which continuously reduces QB to W1,3.

Proof. For a given tree t ⊂ ω<ω we have to construct in a continuous way a tree
φ(t) ∈ Tr1,3 such that ∃ has a winning strategy in φ(t) if and only if t is not
cofinal.

We will subsequently add new vertices to φ(t), starting from a partial tree s0
consisting of s0(2, 2, . . . , 2) = (∃, 1), s0(2, 2, . . . , 2, 1) = (∀, 2). The essence of the
inductive definition of φ(t) is depicted in Figure 2. We start from a tree s0, then
add it again in certain vertices marked in the Figure. There are some restrictions
described below on placement of the vertices (∀, 3). Assume, that

– we already defined a partial tree s1 ⊂ φ(t) and
– for v such that s1(v) = (∀, 2), we already defined sequences nv0, . . . , n

v
k+1,

cv0, . . . , c
v
k such that conditions (1), (2) from the definition of Γ (t) are fulfilled.

We will extend it to a partial tree s2 ⊂ φ(t). For a given leaf v ∈ s1 such that
s(v) = (∀, 2), we add s0 to the right, that is s2(v2w) = s0(w). In every new leaf
v′ ∈ s1 such that s2(v′) = (∀, 2), we define nv

′
i = nvi (i ≤ k+ 1), cv

′
i = cvi (i ≤ k)

and nv
′
k+2 is the number of 2 from v to v′ (formally speaking nv

′
k+2 is defined as

|v′| − |v| − 1) and cv
′
k+1 = 0.

To the left we add

1. s2(v1) = (∀, 3), but only under the condition, that sequences (nv0, . . . , n
v
k+1),

(cv0, . . . , c
v
k, 1) fulfill conditions (1), (2) from the definition of Γ (t). We add

s2(v12r) = s0(r) and for a new leaf v′ such that s2(v′) = (∀, 2) we define
sequences as above with the exception, that cv

′
k+1 = 1,
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Fig. 2. An approximation of the tree φ(t)

2. otherwise we add s2(v1r) = (∃, 2) for every r; this choice ensures that Player
∀ will not be tempted to enter this subtree.

Claim. If Player ∃ has a winning strategy in φ(t), then t ∈ QB.

Proof. Assume ∃ has a winning strategy. Player ∃ plays n0 and later in every
place such that ∀ has a choice of going left or right, ∃ answers with a natural
number. It means, that strategy for ∃ defines a mapping σ from 2<ω into ω<ω.
This extends to a continuous σ from 2ω into ωω and bound of the image is a
quasi–bound of the whole tree t.

Claim. If Player ∀ has a winning strategy, then t is a cofinal tree.

Proof. Take any w ∈ ωω and play it as ∃. Answers of ∀ will lead us to a sequence
in t dominating w.

This finishes the proof of the Theorem.

6 Topological Games

Now we will consider W1,3 from a different angle, namely from the point of
view of topological games and game quantifiers. We first recall the concepts of
the Gale-Stewart game and the game quantifier (see, e.g., [12]). Let Y be an
arbitrary set and let A ⊆ Y ω. The game Γ (A) is played by two players, I and II,
who consecutively select elements of ω.

I y0 y2 y4 y6 . . .

II y1 y3 y5 . . .
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The result of a play is thus an infinite sequence y0y1y2 . . .. Player I wins the play
if this sequence belongs to A; otherwise II is the winner. We define Γ ′(A) as the
same game with the same winning conditions, except that the first move belongs
to Player II.

I y1 y3 y5 . . .

II y0 y2 y4 . . .

For a set C and A ⊆ C × Y ω, we let

�(A) = {x ∈ C : I has a winning strategy in the game Γ (Ax)}
(where Ax = {w : (x,w) ∈ A}).
Definition 2. A subset B of a Cantor space C is game–definable, if it can be
presented as �(A), where

A ⊆ C × ωω

is an Fσ set in the product space of C × ωω.

This concept has been analyzed by Y. N. Moschovakis [16] for the lightface sets
and the equivalence of this notion and lightface notion of Σ1

1–inductiveness is
the content of Exercise 7.C.10 in [16] (a conjunction of a Theorem of Wolfe and a
Theorem of Solovay). The equivalence of these two notions in the boldface sense
follows from [25]. We will not use directly any of this results, however certainly
they inspire the following proofs and in Section 5 we already used completeness
of QB in the class of Σ1

1–inductive sets proved in [25], which is part of the proof
that the two notions coincide.

Proposition 1. W1,3 is game–definable.

Proof. We cannot directly use the parity game from definition of W1,3, as the
parity condition of index (1, 3) is not Fσ. Instead, for a tree t ∈ T1,3, we consider
the following modification of the game G(t). The players move as previously
except in the case when rank of the actual position is 1. In this case, Eve must
exhibit a (finite) strategy to reach a node with a rank greater than 1 in finite
time. (If it is not possible, Eve cannot win in G(t).) Next, Adam chooses one of
the nodes reachable by Eve’s strategy, and the game continues.

To make it precise, we first define a local strategy (for Eve) at a node v of t.
It is a finite subset S of the descendants of v, such that v ∈ S and, whenever
w ∈ S, then

– if t(w) = (∀, 1) then w0, w1 ∈ S;
– if t(w) = (∃, 1) then w has exactly one successor in S;
– if t(w) ↓2≥ 2 then w is a leaf , i.e., has no successor in S.

Now, for a tree t ∈ T1,3, we define a parity game H(t), as follows. The positions
of H(t) include all tree positions v ∈ 2∗. We distinguish between (≥ 2)-positions ,
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for which t(v) ↓2≥ 2, and 1-positions , for which t(w) ↓2 = 1. The (≥ 2)-positions
are assigned to Eve or Adam depending on the value of t(w) ↓1; the 1-positions
are always assigned to Eve. Additionally, there are strategy positions of the form
(v, S), where v is a 1-position and S is a local strategy from v; they are assigned
to Adam. The moves from the (≥ 2)-positions are the same as in G(t) (to
successors). From a 1-position v, there is a move to each strategy position (v, S).
From a strategy position (v, S), there is a move to each tree position w, such
that w is a leaf of S (note that w is then a (≥ 2)-position). The rank of a tree
position with t(v) ↓2= 3 is 1; all other positions have rank 0. It is straightforward
to see that Eve has a winning strategy in G(t) iff she has a winning strategy in
H(t). In order to present W1,3 in the form required in Definition 2, we have to
make sure that the players move in alternation, (which needs not be the case in
G(t)); this can be easily achieved by inserting some trivial moves. Then we define
the relation A as the set of pairs (t, π), such that t is a tree in T1,3 encoded as
element of 2ω, and π is a winning path in H(t) encoded as element of ωω. Note
that the winning condition in H(t) requires that the (new) rank 1 is encountered
only finitely often. Therefore, we can present A as the union of sets An, where
An consists of those pairs (t, π), where π encounters 1 at most n times. The
last set is closed (provided that we encode the positions of the game by natural
numbers, not by sequences of bits). Hence A is Fσ, as required.

Let us notice, that as in the case of Σ1
1–inductive sets holds the following

Lemma 2. If C,D are Cantor spaces and B is a preimage of A under a continu-
ous mapping φ : D → C and A is game–definable, then B is also game–definable.

Proof. Indeed, if A = �(R), R ⊂ C × ωω then B = �({(x, y) ∈ C × ωω :
(φ(x), y) ∈ R}). The second relation is itself a continuous inverse image of R,
hence its complexity is not higher than that of R.

From Section 5 we know that W1,3 is complete in the family of all Σ1
1–inductive

sets and from Corollary 1 we know, that tree languages recognized by alternating
automata of index (1, 3) are Σ1

1–inductive. Hence we are getting the following
known result (see [16, Exercise 7.C.10] and [25]):

Corollary 2. Every Σ1
1–inductive set is game–definable. In particular, tree lan-

guages recognized by alternating automata of index (1, 3) are game–definable.

Our next goal is to show that the set W1,3 is actually complete in the class
of game–definable sets. To this end, we consider another variant of topological
games, where the players select bits instead of natural numbers at the expense
of a more complex winning criterion. The following concept will be useful.

Definition 3. A parity coloring (or coloring, for short) over a finite set Σ is
a mapping K : Σ∗ → ω, taking only a finite number of values. This coloring
defines a set

[K] = {u ∈ Σω : lim sup
n→∞

K(u � n) is even }

(where u � n = u(0) . . . u(n− 1)).
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Recognition by coloring generalizes recognition by deterministic parity automata
on infinite words. A related concept for finite words has been considered by
Séverine Fratani [9] under the name of automates à oracles . A more general
concept of Borel automata appears in [21]. The formulation in Definition 3 comes
from the Master thesis of Micha�l Skrzypczak [26].

If the underlying set is a product, e.g., Σ = 2 × 2, we identify a set A ⊆ Σω

with the relation

{(x, y) ∈ 2ω × 2ω : (x0, y0), (x1, y1), . . . ∈ A}.
Hence, a coloring K : (2 × 2)∗ → ω induces the set �([K]) which, by definition,
consists of those x, for which Player I can ensure that the result y of the play
satisfies

lim sup
n→∞

K(x � n, y � n) is even.

Theorem 3. The following conditions are equivalent for A ⊆ 2ω.

1. A is game–definable,
2. A = �([K]) for a coloring K : (2 × 2)∗ → ω, which takes the values in
{1, 2, 3}.

Proof. To show (2) ⇒ (1), we prove that any set of the form A = �([K]) of
(2) can be continuously reduced to W1,3. For x ∈ 2ω, we define a labeled tree
tKx : 2∗ → {∃, ∀} × {1, 2, 3}, by

tKx (v) =

{
(∃,K(x � |v|, v)) for |v| even
(∀,K(x � |v|, v)) for |v| odd.

(2)

Clearly the mapping x �→ tKx is continuous and it is straightforward to see that
x ∈ A ⇐⇒ tKx ∈ W1,3; indeed the winning strategies can be transferred easily
between the two games. Since the class of game–definable sets is closed under
continuous reductions and we know from Proposition 1 that it contains W1,3, it
follows that it contains A as well.

To prove (1)⇒ (2), suppose A = �(R), for some R ⊆ 2ω×ωω of the class Fσ.
We use a well-known fact that, generally, a set E ⊆ Xω is of the class Fσ iff for
some set of finite words Z ⊆ X∗ the following characterization holds (see, e.g.,
Theorem III 3.11 in [21]):

u ∈ E ⇔ {n ∈ ω : u � n ∈ Z} is finite.

Let Z ⊆ (2 × ω)∗ be such a set for R. Before defining the coloring K formally,
we describe the game it should induce. This game simulates the game Γ (Rx)
but, instead of natural numbers, the players choose now only bits in 2. Suppose
a play in Γ (Rx) was I: m0, II: m1, I: m2, II: m3, and so on. The choice of the
number m0 by player I is now simulated by m0 consecutive rounds in which I
chooses 0, and II answers by 0 as well. (If II violates this rule, he will be forced
to loose by suitable coloring.) After this phase, I plays 1, to which II answers
0 again. Then the roles exchange: now Player I plays only 0’s, to which player
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II answers by 0 for m1 times, and decides to put 1 afterward, and so on. For
example, a play

I 3 2 . . .

II 0 2 . . .

is simulated by

I 0 0 0 1 0 0 0 1 0 0 0 . . .

II 0 0 0 0 1 0 0 0 0 0 1 . . .

A player who deviates from the above rules, looses. So a “correct” play must
be of the form

02m0 10 02m1 01 02m2 10 . . . (3)

We say that a (finite) word 02m0 10 02m1 01 . . . 02mk 10, represents the sequence
m0m1 . . .mk if k is even; similarly, a word 02m0 10 02m1 01 . . . 02mk 01 represents
the sequence m0m1 . . .mk if k is odd.

To guarantee that our coloring game simulates the game Γ (Rx), player I
should win the play (3) exactly in the case when the (pair) sequence

(x, (m0,m1,m2, . . .))

has only a finite number of prefixes in Z. We now define a coloring K to ensure
this property. Consider (α, β) ∈ (2 × 2)∗. We let K(α, β) = 3, whenever β
contains a prefix which violates the rules. If β represents a sequence m0m1 . . .mk,
we let K(α, β) = 2 if (α � (k + 1),m0m1 . . .mk) is not in Z, and K(α, β) = 3,
otherwise. In all other cases, we let K(α, β) = 1 when we simulate mk for even
k and K(α, β) = 2 when we simulate mk for odd k. It is then straightforward to
see that x ∈ �(R) iff x ∈ �([K]), which yields the desired presentation of A.

The equivalence of Theorem 3 along with the fact established in the proof that
all sets representable as in condition (2) of Theorem 3 reduce to W1,3 yield the
following.

Corollary 3. The set W1,3 is complete in the class of game–definable sets.

Finally we are getting:

Corollary 4. The following three concepts of definability coincides for A ⊆ 2ω:

1. A is Σ1
1–inductive,

2. A is game–definable,
3. A = �([K]) for a coloring K : (2 × 2)∗ → ω, which takes the values in
{1, 2, 3}.

Proof. The last two conditions are equivalent according to Theorem 3. If A is
Σ1

1–inductive, then from Corollary 2 it is game–definable. If A is game–definable,
then according to Corollary 3 it is reducible to W1,3, hence from Lemma 1 the
set A is Σ1

1–inductive as a preimage of Σ1
1–inductive set W1,3.
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7 Conclusion and Further Work

We have provided an evidence that the class of Σ1
1–inductive sets is a set–

theoretical generalization of the class of regular tree languages of index (1, 3).
This extends the previously known relations between (0, 1) vs. Π1

1 and (1, 2) vs.
Σ1

1. Plausibly, this characterization can go further with an appropriate extension
of the concept of inductiveness (in the spirit of [7]).

A related topic is the separation property, which is one of the central issues
in descriptive set theory. It is known that the class of Σ1

1–inductive fails this
property ([16, Theorem 6.D.4]); that is, there exist two disjoint Σ1

1–inductive
sets A,B ⊆ {0, 1}ω such that there is no set C which would separate A and B
and which would simultaneously satisfy the conditions that C and {0, 1}ω \ C
are Σ1

1–inductive sets.
We established recently in a joint paper with André Arnold [2] the failure

of separation property for all the levels (ι, n) of the alternating index hierarchy,
for n odd (for the level (0, 1), the result was known [11]). We are planning to
establish whether the pair of regular languages of index (1, 3) constructed in [2]
could serve as an example of inseparable pair for the class of Σ1

1–inductive sets.
The question if the separation property holds for the levels (ι, n) with n even
remains open (it is only known to hold for (1, 2) [11,23]). One may hope that
the ideas from descriptive set theory may offer an insight into the problem.
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24. Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees.

Theoret. Comput. Sci. 112, 413–418 (1993)
25. Saint Raymond, J.: Quasi–bounded trees and analytic inductions. Fundamenta

Mathematicae 191, 175–185 (2006)
26. Skrzypczak, M.: O kolorowaniach drzewa Cantora. Master Thesis, University of

Warsaw (2010)
27. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)



A Complete Logical System

for the Equality of Recursive Terms for Sets

Lawrence S. Moss1, Erik Wennstrom2, and Glen T. Whitney3

1 Department of Mathematics,
Indiana University, Bloomington, IN, USA 47405

lsm@cs.indiana.edu
2 School of Informatics and Computing,

Indiana University, Bloomington, IN, USA 47405
ewennstr@indiana.edu

3 Museum of Mathematics, 134 West 29th Street,
Suite 709/710 New York, NY, 10001

whitney@momath.org

Abstract. This paper presents a sound and complete logical system
whose atomic sentences are the equalities of recursive terms involving
sets. There are two interpretations of this language: one makes use of non-
wellfounded sets with finite transitive closure, and the other uses pointed
finite graphs modulo bisimulation. Our logical system is a sequent-style
deduction system. The main axioms and inference rules come from the
FLR0-proof system from [6], including the Recursion Inference Rule (but
an additional axiom is needed), and also axioms corresponding to the
extensionality axiom of set theory.

1 Introduction: Fixed Point Terms for Sets

This paper presents a language of recursive terms for sets. We have in mind
terms like the following:

x where {x = {x, y}, y = ∅} (1)

x where {x = {z, y}, y = ∅, z = {x, y}} (2)

{x, y} where {x = {x, y}, y = ∅} (3)

{ x where {x = {x, y}, y = ∅} , y where {x = {x, y}, y = ∅} } (4)

z where {x = x, y = {x}, z = {y}} (5)

x where {x = x} (6)

x where {x = {y}} (7)

We propose a formal language with these as terms; it will be a variant of the
language FLR0 from [6] where we replace arbitrary function symbols with set-
forming operations. The idea is to interpret terms such as (1–7) above as sets.
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For example, consider the term in (1) above. Assuming the Anti-Foundation
Axiom (AFA) introduced by Forti and Honsell [5] (see also Aczel [1] and Barwise
and Moss [3]), there is a unique set a which satisfies the condition that a = {a, ∅}.
We therefore interpret the term in (1) as this set a.

If one works in the usual set theory ZFC , then due to the Foundation Axiom
there is no set a = {a, ∅}. But even in this setting it makes sense to consider
terms like (1), but then one would want to take the solution to be a graph rather
than a set. It would be natural to take the solution to be the graph below:

yx (8)

Since (1) mentions x as its head term (the one before where), we really need
to take our solution to be a a pointed graph (a graph together with a specified
point). The circle indicates the specified point.

To have a unique solution, one would want to identify graphs modulo isomor-
phism. It is even sensible to identify graphs modulo bisimulation. The reason
for this is suggested by (2) and the set semantics. As a set, the solution to (2)
would be the unique set a solving the system

x = {z, y}
y = ∅
z = {x, y}

(9)

In more detail, AFA tells us that there is a unique solution s to this system.
This solution is a function of the variables x, y, and z, and the requirement on s
is that sx = {sz, sy}, sy = ∅, and sz = {sx, sy}. We interpret (2) by sx. Recalling
the notion of bisimulation on sets (see [3]), the sets a = {a, ∅} interpreting (1)
and sx solving (9) are bisimilar, and hence assuming AFA, they are equal. In
terms of graphs, the solution to (2) would be

yxz
(10)

There is a bisimulation relation between the underlying graph of (8) and that of
(10). As a set of ordered pairs, this relation is

{〈x, x〉, 〈x, z〉, 〈y, y〉}
This bisimulation relates the distinguished points of the two structures. All of
this is what is meant by pointed graphs modulo bisimulation.

Please note that we use the set braces { and } in two different ways in a term
like x where {x = {x, y}, y = ∅} ; first, as set braces in {x, y}, and second as a
delimiter of the two-equation system on the right of the where {} construct.
The reason that we need some sort of notation in connection with recursive terms
is that we shall allow recursive terms inside of recursive terms, and without the
extra brackets the resulting syntax would not be uniquely parsable.

Returning to our examples, the denotation of (3) should be {a, b}, where a
is the denotation of x in (1), and b the denotation of y in the same term (1).
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We would like a language rich enough to allow us to take finite sets of terms, as
in (4). The natural denotation of this term should be the same as that of (3),
and so also the same as that of (1) and (2).

The term in (5) presents us with something of a problem. On the one hand,
the system x = x does not have a unique solution; indeed, every set solves
this equation. (This has nothing to do with AFA.) So when we consider our
language of terms, we either must ban such a term, or else chose some arbitrary
“scapegoat” for systems like this. Both of these alternatives are worth considering
in a logical system, and the details will turn out to be different. Our choice in this
paper is the second one; we want to take a set ⊥ and arrange that the denotation
of (5) be ⊥. This means that the denotation of term (6) will be {{⊥}}.

Our last issue in crafting a syntax of recursive terms has to do with free
variables, as in (7). For that matter, it is natural to take variables themselves
to be terms, and so we must also give denotations to variables. It is customary
to define denotations relative to assignment functions (these are functions from
variables to some underlying universe). But in the set theoretic context, variables
are themselves sets, and we might as well take the denotation of a variable to
simply be itself. Following this, the denotation of (7) will be {y}.

We shall shortly turn to the formal semantics of terms in our language. Before
that, let us mention what we want to do with those terms in this paper. First,
we would like a logical system that allows us to prove equalities such as the one
we saw above for (1) and (2). That is, we want to arrange that

� x where {x = {x, y}, y = ∅} = x where {x = {z, y}, y = ∅, z = {x, y}} .

Our proof system is based on that of FLR0 from [6], and a crucial feature is
proofs with hypotheses. So we want to say, for example,

x = y � z where {z = {x, z}} = z where {z = {y, z}} .

For that matter, we want

x = y � {z, x} = {z, y}

In words, no matter what sets x, y, and z are, if x = y, then {x, z} = {y, z}.
This will correspond to a soundness assertion,

x = y |= {z, x} = {z, y},

and of course we need a formal semantics of terms for this. We also wish to
incorporate some very elementary set-theoretic reasoning in our logical system.
This goes beyond the more general work done in [6]. For example, we want
our proof system to reflect instances of Extensionality such as the following: if
{x} = {y, z}, then either x = y or x = z. For this, our proof system will be a
sequent calculus : we shall arrange that

{x} = {y, z} � x = y, x = z
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As is customary, the comma on the right will be interpreted disjunctively; com-
mas on the left will be conjunctive, as in

x = y, y = z � x = z

The main point of the paper is to provide a sound and complete proof system
for recursive terms which describe sets under AFA (equivalently, pointed graphs
modulo bisimulation), and which incorporates reasoning using Extensionality.

2 The language: Syntax of Terms, Equations, and
Formulas

Fix a set of variables

V = {x1, x2, . . . , xn, . . .}.
We always assume that xi �= xj for i �= j. For any set S, let (V→ S) denote
the set of all functions σ whose domain is a finite subset of V with the property
that σ(x) ∈ S for all x ∈ dom(σ). Then the set T of terms of our language L is
defined to be the least fixed point of the following (set) equation:

T = V + PfinT +
(
T × (V→ T )

)
. (11)

Since the right-hand side of this equation is a monotone operator on T , such a
least fixed point exists.

We always suppress the injections into the coproduct of (11). So we regard
V as a subset of T , and we also regard each finite subset of T as an element of
T . We use where in connection with the last component of the sum, to denote
recursive terms. For example, instead of writing

〈{x, z}, {〈x, {y, z}〉, 〈y, ∅〉, 〈z, {z}〉}〉,
we write {x, z} where {x = {y, z}, y = ∅, z = {z}} .

We have the usual notions of free and bound variables. If E is the term
A where {σ} , then the variables in the domain of σ are bound everywhere in
E; variables which are not bound by any occurrence of where are free.

A term substitution is a function σ : V→ T . We define its extension [σ] : T →
T by recursion:

[σ]x = σ(x)
[σ]{A1, . . . , An} = {[σ]A1, . . . , [σ]An}
[σ](A where {x = A} ) = ([τ ]A) where {x = [τ ]A}

where τ(y) = y for y ∈ x,
and τ(y) = σ(y) for y ∈ dom(σ) − x,

An atomic formula of L is an equation A = B between terms of L. A formula
is an atomic formula, perhaps universally quantified by a sequence of distinct
variables. So we would write ∀x(A = B) for a formula.
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3 Semantics of L
At this point, we have spelled out the syntax of terms of L, and also the formulas
of this language. The time has come to go into details on the semantics. Our
discussion in Section 1 mentioned that the terms could be interpreted either as
sets (assuming AFA) or as pointed finite graphs modulo bisimulation. We are
going to present the semantics both ways.

The first presentation of the semantics uses finite graphs modulo bisimulation.
We feel that all readers should be able to follow this most concrete semantics.
Then we re-present the semantics using non-wellfounded sets, for those familiar
with the topic.

Before we give the semantics, we need some points that are actually about
the syntax.

Definition 3.1. Let E be any term, say

E ≡ E0 where {x1 = E1, . . . , xn = En}
The E-sequence from xi is the longest finite or infinite sequence of variables
taken from the list x1, . . ., xn, say

xi = y0, y1, . . . , yn, . . .

such that the body of E contains the equation yj−1 = yj for every j > 0. That
is, for every j > 0, the right-hand side of the equation for the variable yj−1) is
the variable yj.

We say that xi is ungrounded in E if the E-sequence from xi is infinite.
Otherwise, xi is grounded in E. In such a case, if the E-sequence from xi ends
in xj, then we have information about the corresponding term Ej in E: Ej is
either a variable outside of {x1, . . . , xn} (that is, a free variable in the the overall
term E), or Ej is a recursion term (one containing where), or else Ej is a set
term.

Example 3.2.

{∅, {x, y, v}} where {x = z, y = {y, w}, z = x,w = {y}} (12)

We have made life a little easier by using different variables instead of subscripts.
We continue the practice and write Ex = z, Ey = {y, w}, Ez = x, and Ew = {y}.

The E-sequence from x is x, z, x, z, . . .. The E-sequence from z is z, x, z, x, . . ..
So x and z are ungrounded in E. The E-sequences from y and w are finite and
end in set terms.

3.1 Semantics in Pointed Finite Graphs Modulo Bisimulation

Our first semantics uses pointed finite graphs modulo bisimulation. To save on
some terminology, in what follows, graph means finite pointed graph modulo bisim-
ulation. Graphs for us allow self-loops but not for multiple edges between points.
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Let Y ⊆ V∪{⊥}. A graph over Y is a graph where some of the end nodes are
labeled in the set Y . We indicate end nodes in graphs over Y by putting a box
around them. These must be end nodes of the graph; they cannot have children.
Consequently, if the root node belongs to Y , then that node is the entire graph.
For example, here is a graph over {y}:

yx

It will turn out that this graph is

‖x where {x = {x, y}} ‖ .
For each term A with free variables in Y = {y1, . . . , yk}, we shall arrange that
‖A‖ be a graph over Y .

For a variable x, we take ‖x‖ = x .
For a set term {A1, . . . , An} we take the disjoint union of ‖A1‖, . . ., ‖An‖.

Then we add a fresh point ∗ which we take to be the overall distinguished node.
We take as the children of ∗ the distinguished points of A1, . . ., An. We also take
the quotient of the resulting accessible pointed graph by the largest bisimulation.
This means that in case ‖Ai‖ = ‖Aj‖, we only want one copy.

Finally, the semantics of a where term such as (13) below is defined in stages:

E ≡ E0 where {x1 = E1, . . . , xn = En} (13)

Write X for the finite set {x1, . . . , xn}. Let Y be a finite set such which includes
the free variables of E. First, for i = 1, . . . , n, let Gi be the graph overX∪Y ∪{⊥}
defined as follows. If xi is ungrounded in E, let Gi be the one-point graph with
distinguished point ⊥. If xi is grounded and the xi-sequence over E leads to A,
then let Gi = ‖A‖.

Second, define graphs Hi as follows: take as node set for Hi the disjoint union
G1 + · · ·+Gn. Each Gi is a pointed graph and has its own distinguished point
which we’ll call gi. Identify each end node xi with gi. (That is, take the quotient
graph.) Declare the overall distinguished point of Hi to be gi. Finally, take the
subgraph accessible from gi.

Finally, the semantics of E from (13) is taken to be ‖E0‖, with each xi
identified with the distinguished point of Gi.

Example 3.3. We exhibit the denotation in the graph semantics for the term in
(12). The set X of bound variables is {x, y, z, w}. The set Y of free variables is
{v}. Gx and Gz are the same graph, the one-point graph ⊥ . Gy and Gw are
the two pointed graphs shown below:

ay w b y

Here a and b are arbitrary sets. Let H be

ab w
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Then Hy is this graph H , with a taken as the distinguished point (so that b is
absent), and Hw is H with b as distinguished point. Hx and Hz are again ⊥ .
Continuing, the interpretation of the head term, ‖{∅, {x, y, v}}‖, is shown on the
left below:

yx

d

eg

v

ab ⊥

d eg v

The overall semantics of the term in (12) is obtained by substitution into the
graph for {∅, {x, y, v}}. It would be the graph on the right above.

3.2 Semantics in Non-wellfounded Sets

The most natural semantics of L would probably be the set semantics, since the
syntax of the language uses sets rather than graphs. Readers of [3] will quickly
see how the terms of L may be interpreted as non-wellfounded sets, where we
use V∪{⊥} as a set of urelements. (Indeed, as we mention in Remark 3.6 below,
we want to add an additional countable set A of urelements.)

We define ‖E‖ for terms E by recursion. Variables are interpreted by them-
selves: ‖x‖ = x. For set terms, we take

‖{E1, . . . , En}‖ = {‖E1‖ , . . . , ‖En‖}.

For a recursion term E, we first modify E to set the ungrounded variables to ⊥,
and those variables which are grounded to a free variable outside of E to that
variable itself. The body of the resulting term is then a system of equations in
the bound variables. Then AFA gives a solution to this system, a function s
from the bound variables. Using the work of Chapter 8 in [3], s extends to an
operation [s] defined on all sets, and we take ‖E‖ to be [s](‖E0‖), where E0 is
the head term of E.

For any set or class X , HF1/2(X) denotes the collection of sets over X whose
transitive closure is finite. An important feature of the semantics is that each
term E will get a denotation in

Y ∪ {⊥} ∪HF 1/2(Y ∪ {⊥}),

where Y is the set of free variables in E.

Example 3.4. Again we consider the term from (12). We modify the term to take
care of the ungrounded variables x and z, obtaining

{∅, {x, y, v}} where {x = ⊥, y = {y, w}, z = ⊥, w = {y}} (14)
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By AFA, the system on the right has a unique solution, say s. This would be
a function with domain X = {x, y, z, w} such that sx = ⊥ = sz, sy = {sy, sw},
and sw = {sy}. Then s extends to [s] defined on all sets built from X and ⊥.
The interpretation of the term in (12) will be

[s]({∅, {x, y, v}}) = {∅, {sx, sy, v}}.

Remark 3.5. For those not familar with non-wellfounded sets, here is an entry
point to the discussion above. Consider the set S of all graphs from Section 3.1.
Write G ∈ H if there is some child h of the root of G such that H is the part of
G accessible from h. (Recall that we always identify graphs up to bisimulation.)
Then the resulting structure (S,∈) satisfies all of the axioms of set theory except
two. Since our graphs are finite, (S,∈) will not satisfy the Axiom of Infinity. And
since we are using graphs which might have cycles, the Axiom of Foundation will
also not be satisfied. Indeed, (S,∈) satisfies a weak form of the Anti-Foundation
Axiom, one which basically says that all finite systems of equations have unique
solutions, where the left-hand sides are variables, and the right-hand sides are
either a (finite) set of variables found on the left side, or a single variable not on
the left side, or ⊥. The identification of graphs modulo bisumulation corresponds
to the Axiom of Extensionality. To summarize, the reader not familiar with non-
wellfounded sets could simply work with graphs, reading A ∈ B in the way
we just described, and (as always) identifying two sets which have the same
elements.

Remark 3.6. It will be convenient in several places (Lemmas 4.3 and 4.10) to
work with a version of the set semantics that allows for a countable set A of
additional urelements. So we shall work in the universe of sets built from V ∪
{⊥} ∪ A. These additional urelements are mostly needed for convenience, and
we suspect that they are not strictly needed for our completeness results.

3.3 Semantics Using the Monad of Iterative Algebras

Finally, we have yet a third semantics, using the rational monad of a finitary set
functor. We present this mostly to connect to the literature on coalgebra. It also
gives a more general semantics, since it goes via iterative algebras. That is, we
are using the initial iterative algebra of the finite power set functor Pfin. This
functor takes a set X to the set Pfin(X) of finite subsets of X . It also takes a
function f : X → Y to the function Pfinf : PfinX → PfinY given by direct
images: for a finite X0 ⊆ X ,

Pfin(f)(X0) = f [X0] = {f(x) : x ∈ X0}.

However, much of what we need in order to present the semantics and prove
some needed results follows only from the fact that we have an iterative algebra.
(Sometimes we need to know that we are working with an initial iterative alge-
bra.) So this third presentation points the way to further results along the lines
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of what we are doing in this paper, but for initial iterative algebras of functors
besides Pfin.

We shall write H for the finite power set functor Pfin in what follows, partly
to make the notation more readable and also to pave the way for a generalization
later on.

An H-algebra is a pair (A, a), where a : HA→ A. In contrast, an H-coalgebra
is a pair (A, a), where a : A→ HA.

An H-algebra (A, a) is iterative if for every finite set X and every f : X →
HX +A, there is a unique f † : X → A such that the diagram below commutes:

X
f ��

f†

��

HX +A

Hf†+A
��

A HA+A
[a,A]

��

An early reference on iterative algebras in this sense is Nelson [8], but the paper
that is closest to what we do is Adámek, Milius, and Velebil [2]. This paper proves
that such algebras exist, not only for our H but for many other set functors.
In fact, assuming a mild condition on set functors J (accessibility, also called
boundedness), J has a final coalgebra (A, a : A → JA). Then a is invertible by
Lambek’s Lemma, and (A, a−1) is not only iterative, it is completely iterative (it
satisfies the iterativity condition even for infinite sets X).

Continuing to quote results from [2], for each set X there is a free iterative
H-algebra RX . We have RX = HRX +X . (The letter R comes from the words
“rational” and “regular”, two sources of examples.) Moreover, R carries the
structure of a monad (R, η, μ), where ηX : X → RX is inr : X → HRX +X .

For each set X ⊆ V, and each term E all of whose free variables belong to
X , we define ‖E‖X ∈ RX . The definition is by recursion on E, and the only
interesting part is the one for recursion terms. Consider again the term from
(13),

E ≡ E0 where {x1 = E1, . . . , xn = En}
Let Y be a finite set which includes the free variables of the overall term E. Let
X = {x1, . . . , xn}, so that all Ei have their free variables in X ∪ Y . We already
have ‖Ei‖X∪Y for all i. This gives a map e : X → R(X ∪ Y ) → R(X + Y ).
By Corollary 4.7 of [2], there is a unique e† : RY such that the diagram below
commutes:

X
e† ��

e

��

RY

R(X + Y )
R[e†,ηY ]

�� RRY

μY

��

Then we set

‖E‖Y = (μY ◦R[e†, ηY ]) ‖E0‖ .
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To obtain a more exact match between this semantics and our previous work,
we would use

‖E‖ = Ri(‖E‖Y ),

where i : Y → V is the inclusion.

Remark 3.7. We have presented three semantics for the same language. To be
concrete in the rest of this paper, we are going to use the second semantics, the
one that uses non-wellfounded sets.

3.4 The Substitution Lemma

Each term substitution σ gives rise to another substitution σ̂ : X → RV given
by

σ̂(x) = ‖σ(x)‖ .
Lemma 3.8. The diagram below commutes:

T
‖ ‖ ��

[σ]

��

RY

[σ̂]

��
T ‖ ‖

�� RY

That is, for all terms A and all term substitutions σ,

‖[σ]A‖ = [σ̂] ‖A‖ .

Proof. By induction on A.

3.5 Semantics of Equations and Formulas

At this point, we have three semantics of terms, interpreting a term A by a set
or graph ‖A‖. We complete the semantics with a discussion of equations and
formulas.

Let α be a substitution, a map from some subset of X to R(V+{⊥}). We say
that α satisfies the formula ∀x(A = B) if [β] ‖A‖ = [β] ‖B‖, for any substitution
β which agrees with α on all variables in dom(α) \ x. For example, α satisfies
∀x({x, y, z} = {x, y}) exactly if α(y) = α(z). And no substitution satisfies the
equation ∀x(x = ∅).

A closed formula is valid if it is satisfied by any (equivalently, all) substitutions.
More generally, we write Δ |= Σ to mean that for every substitution α, if α

satisfies each φ ∈ Δ, then α satisfies some ψ ∈ Σ.
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4 A Sequent Deduction System

We now write down a specific sequent deduction system which is sound and
complete for Δ |= Γ for sequents (i.e., finite sets) Δ and Γ . Our proof gives the
additional information that this entailment relation is decidable.

Before presenting the system, we make a few remarks. First, one important
feature of the Anti-Foundation Axiom (and of iterative algebras more generally)
is that the sets guaranteed as solutions to systems of equations are unique. So,
for example,

f(A) = A |= A = x where {x = f(x)} , (15)

in the structure examined in the previous section. We must have a rule to derive
the consequences of this uniqueness. It can be shown that valid semantic facts
such as (15) cannot be proven in the proof system for FLR0 from [6]; the idea
behind the proof is that not every FLR0 structure has unique fixed points for
each of its transformations. It turns out that our Uniqueness Axiom will be the
only new rule dealing with recursion, beyond the axiomatization of [6]. All of the
other new axioms arise to handle set-theoretic phenomena, notably the Axiom
of Extensionality.

The following collection of axioms and inference rules comprise our proof
system for L. For the most part, the axioms and inference rules transcribe the
proof system of [6], which is complete for the standard FLR0 identities. The only
changes are as follows: The Cut rule is extended to handle multiple formulas on
the right of �; the Uniqueness axiom for recursion is new; and a few new axioms
are added to handle the set-theoretic phenomena that arise.

In the following rules, A, B, C, and E are arbitrary terms, φ and ψ are
arbitrary formulas, and Δ,Σ,Ξ, and Θ are arbitrary finite sets of formulas,
unless otherwise noted. When dealing with assertions such as

{φ1, . . . , φk} � {ψ1, . . . , ψl} ,

we always omit the set braces on each side and simply list the formulas.

Logical and equational axioms

– φ � φ.
– � A = A; A = B � B = A; A = B,B = C � A = C.
– (Replacement) A = B � [x �→ A](E) = [x �→ B](E), provided the substitu-

tions are free.
– (Specialization) ∀x(φ(x)) � φ(E), provided the substitution is free.

Logical inference rules

– (Weakening) From Δ � Σ, conclude Δ ∪ Ξ � Σ ∪Θ.
– (Extended Cut) From Δ � Ξ and Δ, ξ � Σ for each ξ ∈ Ξ, conclude Δ � Σ.
– (Generalization) From Δ � φ(x), Γ conclude Δ � ∀x(φ(x)), Γ , provided that
x does not occur free in Δ.
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Recursion axioms

– (Head) � A where {x1 = B1, . . . , xn = Bn} = [σ]A, where the term substi-
tution σ takes xi to xi where {x1 = B1, . . . , xn = Bn} for each i from 1 to
n.

– (Bekič-Scott) � A where {y = C,x = B} = A′ where {x = B′} . Here
A′ ≡ A where {y = C} and B′

i ≡ Bi where {y = C} .
– (Fixpoint) � A where {x = A} = x where {x = A} .
– (Uniqueness) E = A(E) � E = x where {x = A(x)} . Here A(x) is a term

in which all occurences of the variable x are guarded; i.e., all occurrences are
inside of set terms.

Recursion inference rule As before, let A and B be terms

A ≡ A0 where {x1 = A1, . . . , xn = An} and

B ≡ B0 where {y1 = B1, . . . , ym = Bm} ,

with disjoint bound variables and let Σ be a set of equations, each of the form
xi = yj. From Δ,Σ � A0 = B0 and Δ,Σ � Ai = Bj for each (xi = yj) ∈ Σ,
conclude Δ � A = B.

Set-theoretic axioms

– (Extensionality) Suppose that A and B are both set terms. Then for each
a ∈ A,

A = B � {a = b ||| b ∈ B} .
– (⊥) For each set term A, x where {x = x} = A � is an axiom. (Note that

the right side of the sequent is the empty set.)

This concludes the list of axioms and inference rules of the proof system for L.
As usual, we write Δ � Σ to mean that this judgment can be obtained from the
axioms by applications of the inference rules.

The soundness part of the proof is fairly long and tedious due to the notion
of groundedness. One can find similar soundness arguments in [6, 7]. Our main
result will be a Completeness Theorem for this logic. We prove this in Section 4.3
below. Section 4.1 gives some preliminary results on the deduction system, as
does Section 4.2.

However, before turning to those, we mention that the soundness of the Recur-
sion Inference rule is similar to the argument in [7], and we present the soundness
argument for the only new axiom in this paper, the Uniqueness axiom.

Soundness of the Uniqueness Axiom. We remind the reader that our official
semantics is the one which uses non-wellfounded sets. We shall call upon some
results from [3].

Fix formulas A(x) and E, and suppose that α is a substitution with the
property that [α] ‖E‖ = [α] ‖A(E)‖. Consider the term substitution σ defined on
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x alone such that σ(x) = E. By the Substitution Lemma, ‖A(E)‖ = [σ̂] ‖A(x)‖.
We must show that

[α] ‖E‖ = [α] ‖ x where {x = A(x)} ‖ . (16)

It will be convenient to assume that the variable x used in x where {x = A(x)}
is completely fresh; i.e., that it does not appear in the finite domain of α, or in
the any of the terms in the range of α, or in E. Let z be such a fresh variable.
Then ‖x where {x = A(x)} ‖ = ‖ z where {z = A(z)} ‖. So we may recast (16),
using z for x in the recursion term. Our method of showing (16) is to show that
both of these are solutions to the same equation, z = [α] ‖A(z)‖. For this, it is
essential that z be fresh.

Let e be the substitution defined on z alone so that e(z) = ‖A(z)‖. Then e
has a unique solution, say s. And

‖ z where {z = A(z)} ‖ = s(z) = [s] ‖A(z)‖ .

Let s′ be the substitution with domain z given by s′(z) = [α]s(z). Then the
substitution-like operations [α][s] and [s′][α] agree on all variables, hence on all
sets built over the variables. (See Exercise 8.3 of [3].) Therefore,

s′(z) = [α]s(z)
= [α] [s] ‖A(z)‖
= [s′] [α] ‖A(z)‖

In other words, s′ is the solution of the equation we wish to consider, z =
[α] ‖A(z)‖.

Next, let τ be the one-point term substitution z �→ E. Then ‖A(E)‖ =
[τ̂ ] ‖A(z)‖. Let t′ be the substitution with domain z given by t′(z) = [α]τ̂ (z). As
above, [t′] [α] = [α] [τ̂ ]. So

t′(z) = [α] ‖A(E)‖
= [α] ‖E‖
= [α] [τ̂ ] ‖A(z)‖
= [t′] [α] ‖A(z)‖

We conclude that t′ is also a solution of z = [α] ‖A(z)‖. This last equation only
has one solution. (This is where we use the assumption that the original A(x)
is guarded in x. If A(x) were just x, for example, then one of the Uniqueness
axioms would state that x = x |= x = ⊥, rendering the system unsound. Also,
if x doesn’t actually occur in A, the equation z = [α] ‖A(z)‖ still has a unique
solution.) So we see that t′(z) = s′(z). This means that

[α] ‖E‖ = t′(z) = [α] ‖ x where {x = A} ‖ ,

and this verifies that (16) holds.
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4.1 Examples and Basic Results

Example 4.1. First, an example to show how the Extensionality and extended
Cut rules combine to handle the simple set-theoretic consequences that come up
in L. Notice that

{x, y, z} = {u, v} |=
{{x, y} , {y, z} , {z, x}} = {{x, y} , {y, z} , {z, x} , {x, y, z}} . (17)

Intuitively, if {x, y, z} = {u, v}, then two of the three values x, y, and z must be
identical. So {x, y, z} must equal one of its doubleton subsets. But can such an
entailment be proved in this system? Call the conclusion of (17) φ. Replacement
applied to the variable w in E ≡ {w, x, z} yields z = y � {x, z} = {x, y, z}. A
similar instance of Replacement gives {x, z} = {x, y, z} � φ. Cutting, we have
z = y � φ. Similarly, any other equation between two of the variables x, y, z will
serve on the left-hand side. Hence, by Extended Cut, it is enough to derive

{x, y, z} = {u, v} � x = z, z = y, y = x. (18)

But now by Extensionality, {x, y, z} = {u, v} � x = u, x = v, and similarly for y
and z. And clearly both

x = u, y = u, z = v � x = z, z = y, y = x and

x = v, y = u, z = v � x = z, z = y, y = x.

Hence by Extended Cut,

{x, y, z} = {u, v} , y = u, z = v � x = z, z = y, y = x.

Similarly, y = v, z = v � x = z, z = y, y = x, so we can cut on the pair
y = u, y = v to get

{x, y, z} = {u, v} , z = v � x = z, z = y, y = x.

Finally, we can do the same thing for z = u and then use Extended Cut to
eliminate the hypothesis on z altogether. This yields the desired (18).

Example 4.2. Here is another example of how the proof system works. We claim
that

x = {x, y} , y = ∅, r = {r, s} , s = ∅ |= x = r. (19)

Here is the proof. The variable x is free in the term E = z where {z = {z, x}} ,
and

[x �→ y]E = z where {z = {z, y}}
[x �→ s]E = z where {z = {z, s}} .

Thus by Replacement

y = s � z where {z = {z, y}} = z where {z = {z, s}} .
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One of the Uniqueness Axioms is

x = {x, y} � x = z where {z = {z, y}} ,

and another is
r = {r, y} � r = z where {z = {z, y}} .

So by Transitivity, x = {x, y}, r = {r, y} � x = r. To finish the verification of
(19), we need only check that

x = {x, y} , y = ∅, r = {r, s} , s = ∅ � r = {r, y}, (20)

and then use Cut. But (20) follows easily from Replacement.
Note that this example shows that recursive terms might well be needed in

the proof of a sequent Δ � φ, even when the terms in the sequent are explicit.

We conclude this section with several results which are needed for the complete-
ness theorem.

Lemma 4.3. Suppose that A comes from B by renaming bound variables. Then
A |= B and A � B.

Proof. The first assertion is by the Substitution Lemma and some other routine
semantic results. The second involves several easy inductions using the Recursion
Inference rule.

Next, we have a special case of completeness that plays a key role in the overall
result of Section 4.3.

Lemma 4.4. Let A and B be unquantified terms of L. If |= A = B, then
� A = B.

Proof. We assume familiarity with the proof of the Simplification Lemma in [6].
By that result, we may assume that

A ≡ x1 where {x1 = A1, . . . , xn = An}
B ≡ y1 where {y1 = B1, . . . , ym = Bm}

where each Ai or Bj is a variable, or set of variables. (Essentially, one can
repeatedly use the Bekič-Scott axiom to un-nest and combine all the recursions
in A and B.) By renaming bound variables, arrange for the lists x and y to
be disjoint. Now each of A and B consists essentially of just a flat system of
equations. (We are ignoring the ⊥ to keep things simpler, but this can be added
in.) Let s be the solution to A and t the solution to B. We are given that
‖A‖ = ‖B‖. So s(x1) = t(y1).

There is a bisimulation R such that R(x1, y1). Then an application of the
Recursion Inference rule with empty Δ derives � A = B: the set Σ consists of
equations xi = yj for all pairs xi, yj such that R(xi, yj); and the bisimulation
property guarantees that Σ � Ai = Bj for each equation (xi = yj) ∈ Σ.
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Lemma 4.5. For 1 ≤ i ≤ n, let Ai and Bi be unquantified terms of L. If

|= A1 = B1, . . . , An = Bn,

then � A1 = B1, . . . , An = Bn.

Proof. By renaming bound variables if necessary, we may assume that no vari-
able which occurs free in any of the terms also occurs bound. Let the free
variables be X = {x1, . . . , xk}. Let a1, . . . , ak ∈ A be distinct atoms which
do not occur in any of our terms. Let s be the substitution xi �→ ai. Then
|= [s]A1 = [s]B1, . . . , [s]An = [s]Bn. But the sequent above now has no free
variables whatsoever, so the values [α][s]Ai and [α][s]Bi are independent of
whichever substitution α we happen to consider. Therefore, for some fixed i,
|= [s]Ai = [s]Bi.

Now consider s−1. This function is a substitution because its domain is a set
of urelements. It is not a term substitution, but it is easy to see that [s−1] does
map L into L. Recall also that we assume that no xi occurs bound in any of our
original terms. Thus, [s−1][s]Ai = Ai and [s−1][s]Bi = Bi.

We claim that |= Ai = Bi. Let α be any substitution with domain X . Let t
be the substitution ai �→ α(xi), so that [α][s−1] = [t][α]. Then

[α][s−1][s]Ai = [t][α][s]Ai = [t][α][s]Bi = [α][s−1][s]Bi.

Our claim follows. So the overall result follows from Lemma 4.4 and Weakening.

4.2 Analogues of the Deduction Theorem

The lemmas in this section constitute analogues of the Deduction Theorem for
the L logical system. The first is a semantic result, the second syntactic. Before
presenting these, we introduce an abbreviation to save on some notation. If σ is
a substitution, we write

(A = B) where {σ} ≡ A where {σ} = B where {σ} .

Note that this is a formula, not a term. We also extend this notation from single
equations A = B to sets Θ of equations; then Θ where {σ} will abbreviate a
set of equations. Note that if Θ is empty, then Θ where {σ} will also be empty.

Lemma 4.6. Let Θ and Σ be any set of unquantified formulas, and let x be a
list of distinct variables. If Θ, x = D |= Σ, then

Θ where {x = D} |= Σ where {x = D} . (21)

Proof. Let α be any substitution which satisfies every equation in the left-hand
side of (21). Let e be the system xi = ‖Di‖, and let s be the solution of e. Let
β be the substitution with domain {x}∪dom(α) defined by β(xi) = [α]s(xi), and
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for y /∈ {x}, β(y) = α(y). Then [β] = [α] [s]. In particular, β(xi) = [α] [s] ‖Di‖
for all i, so β satisfies xi = Di. We also claim that β satisfies every equation
E = M in Θ. For each such equation,

[β] ‖E‖ = [α] [s] ‖E‖
= [α] ‖E where {x = D} ‖
= [α] ‖M where {x = D} ‖
= [β] ‖M‖

So the hypothesis of our lemma applies to β. For some equation A = B in Σ,
[β] ‖A‖ = [β] ‖B‖. And this implies that α satisfies the corresponding equation
on the right side of (21), as desired.

Lemma 4.7. Let Θ be any set of unquantified formulas, and suppose that every
occurrence of x in the term D occurs inside a set term. If

Θ where {x = D} � Σ where {x = D} ,

then Θ, x = D � Σ.

Proof. We want to use the Uniqueness axiom to see that x = D � x =
x where {x = D} . We may do so because every occurrence of x in D occurs
inside a set term.

Let σ be the term substitution x �→ x where {x = D} . Thus, by Replacement,

E = M � [σ]E = [σ]M

for each formula E = M in Θ, provided only that the substitutions are free.
Furthermore, the Head axiom is exactly � [σ]E = E where {x = D} . Hence Θ
proves every formula in Θ where {x = D} . Using the hypothesis of our lemma,

Θ � Σ where {x = D} .

Once again, we use the Uniqueness, Replacement, and Head axioms to see that

x = D � A where {x = D} = A

and similarly for B, for all equations A = B in Σ. Using Transitivity, Extended
Cut, and Weakening, we see that Θ, x = D � Σ.

4.3 Completeness

Our main goal is to prove the following result:

Theorem 4.8 (Completeness/Decidability). For any finite sets Δ and Γ
of formulas of L, Δ � Γ if and only if Δ |= Γ . Moreover, this common relation
is decidable.
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The soundness of the system was checked at the end of Section 4. Now we turn
to completeness. One main idea of the proof is to explore what reasoning can be
carried out “within” the head term of a recursion. To this end, it is convenient to
extend the our abbreviations from the beginning of Section 4.2. We shall write
∀x(A = B) where {σ} to abbreviate ∀x(A where {σ′} = B where {σ′} ), in
which σ′ is the same system as σ, but with the equation for the variable x (if
any) deleted.

The following lemma shows that we can carry out arbitrary reasoning from
the deductive system inside a where-context.

Lemma 4.9. Suppose that Δ � Γ , and that σ is any system of equations. Then

Δ where {σ} � Γ where {σ} .

Proof. The proof goes by induction on the derivation of Δ � Γ . First check that
each sequent obtained by applying · where {σ} to all the formulas in an axiom
is a derivable sequent. For example, the axiom A = B � B = A becomes

A where {σ} = B where {σ} � B where {σ} = A where {σ} ,
which is just another instance of the same axiom. Replacement and almost all
of the other logical and equational axioms work similarly. Specialization is more
complicated. Let σ be any system of equations, and σ′ be the same system with
the equation for the variable x (if any) deleted. Then we must show that

∀x(A(x) where {σ′} = B(x) where {σ′} ) � (
A(E) = B(E)

)
where {σ} .

To do this, Specialize the hypothesis with the term [x �→ x where {σ} ]E. Then
use Head and Bekič-Scott on the result to yield the desired conclusion.

The · where {σ} analogues of the recursion axioms almost all follow from a
trivial application of the Recursion Inference rule with empty Σ. The exception
is the Uniqueness axiom, in which it may happen that σ is defined on a variable
free in the term E. An example will show how to handle such a case: Suppose that
E ≡ y, and that σ contains an equation for y. A typical instance of Uniqueness
would be:

y = {y} � y = x where {x = {x}} .
We need to show that

(y = {y}) where {σ} � y where {σ} =
(
x where {x = {x}} ) where {σ} .

Using Head, the right hand side of the new hypothesis equals { y where {σ} }; so
by Uniqueness, the new hypothesis proves y where {σ} = x where {x = {x}} .
Since the right-hand side of this does not include free occurrences of y, it may
be wrapped in · where {σ} by the Head axiom.

The Bottom axiom carries over trivially. The only remaining axiom is Exten-
sionality. The new hypothesis A where {σ} = B where {σ} in which A and
B are both sets of formulas can be converted via the Head axiom into a form
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suitable for applying Extensionality; and the results converted back to the form
a where {σ} = b where {σ} for a ∈ A and b ∈ B by applying Head again, in
reverse.

Now we need to check that the · where {σ} form of any sequent derivable by
an inference rule is also derivable. There is nothing to show for Weakening and
Extended Cut; applying · where {σ} to every formula in either of these rules
yields another instance of the same rule. Next, suppose Δ � ∀x(φ(x)) is derivable
by Generalization. In other words, Δ � φ(x) and x does not occur free in Δ.
Let σ′ be the same as σ with x undefined. Then by induction, Δ where {σ′} �
φ(x) where {σ′} . By Generalization,

Δ where {σ′} � ∀x(φ(x) where {σ′} ) ≡ (∀x(φ(x))
)
where {σ} .

Since x does not occur free in Δ, by Head and Bekič-Scott Δ where {σ} proves
each formula in Δ where {σ′} (the extra condition on x is vacuous). Cutting,
Δ where {σ} � (∀x(φ(x))) where {σ} as desired.

Finally, suppose that Δ � A = B by the Recursion inference rule. Then we
have that Δ,Σ � A0 = B0 and Δ,Σ � Ai = Bj for each (xi = yj) ∈ Σ, and all
of these may be established via proofs which are shorter than the given proof.
Arrange by change of bound variables that the variables xi and yj used in the
given instance of Recursion inference do not overlap with the variables in the
system σ. This assumption implies that the set of formulas Δ where {σ} , Σ
proves each formula in (Δ,Σ) where {σ} . Hence by induction

Δ where {σ} , Σ � Ai where {σ} = Bj where {σ}

for each appropriate pair i, j, including 0, 0. So by Recursion Inference,

Δ where {σ} � (A0 where {σ} ) where {. . . , xi = Ai where {σ} , . . .} =

(B0 where {σ} ) where {. . . , yj = Bj where {σ} , . . .} .

The Bekič-Scott axiom now converts the conclusion of this sequent to the desired
(A = B) where {σ} .

Finally, we show that universal quantifiers may be eliminated from L.

Lemma 4.10. For any universally quantified formula ∀x(φ(x)), there is a nat-
ural number Nφ such that for any fresh atoms a1, . . . , aNφ

∈ A,

φ(a1), φ(a2), . . . , φ(aNφ
) |= ∀x(φ(x)).

Proof. We first consider the possibilities when φ is x = B for some term B. If
‖B‖ = x, then Nφ = 0. If ‖B‖ is some variable other than x, say y, then Nφ = 2,
since a1 = B, a2 = B is unsatisfiable. Finally, if ‖B‖ is a set term, Nφ = 1 since
a1 = B is unsatisfiable.

Next we consider the case that φ is y = B for some variable y distinct from
x. If ‖B‖ = x, the previous case applies. If ‖B‖ is any other variable, then the
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universal quantification is vacuous, and Nφ = 1. Similarly, if ‖B‖ is a set, we
may assume that x is an element of the transitive closure of ‖B‖. Since we are

operating in HF 1/2, the transitive closure of ‖B‖ is finite, say of cardinality N .
We may take Nφ = N + 1. This works because substituting ai for x cannot
increase the cardinality of the transitive closure of a set. Hence, the facts y =
[x �→ a1] ‖B‖ , . . . , y = [x �→ aN+1] ‖B‖ are inconsistent: any one of them implies
that the transitive closure of y has ≤ N elements, but taken together they
guarantee that each ai is in the transitive closure of y.

Now we may consider the case that φ is A = B where both ‖A‖ and ‖B‖ are
sets. If there is no substitution for x and the remaining free variables of A and
B which satisfies A = B, then obviously Nφ = 1 works. Otherwise, consider the
finite transitive closures of ‖A‖ and ‖B‖. Any substitution satisfyingA = B gives
rise to a collection of equations between elements of these transitive closures. For
example,

{0, x, y, {0, z}} = {x, y, {1} , {w, 1}}
might be satisfied by

0 = y, x = {1} , {0, z} = {w, 1} , z = 1, w = 0.

Of such a list of equations, the ones with a variable on one side suffice to imply
that A = B; and in order for A = B it is necessary for some such list of equations
to hold. There are only finitely many possible such lists of equations, let us say
Ψ1, . . . , ΨK . And for each Ψi, each equation ψ ∈ Ψi has a corresponding Nψ by
the first two cases, since one side of ψ is a variable. Let Ni be the maximum of
all Nψ for ψ ∈ Ψi. Then we may take

Nφ =

K∑

i=1

Ni.

This works because given Nφ instances of A = B, each one entails one of the
K possible lists of equations identified above. Thus, we must have at least Ni
instances of some Ψi. In particular, we have at leastNψ instances of each equation
in Ψi, which entails the universally quantified version of ψ. Thus, the equations
in Ψi hold for any x, which in turn implies that A = B holds for any x.

All that remains is that case that φ itself has universal quantifiers, i.e. φ ≡
∀y(φ′) where φ′ is of the form A = B. Then Nφ = Nφ′ works: Nφ′ instances of
∀y(φ′) entail for any values of y the corresponding Nφ′ instances of φ′, which in
turn entail ∀x(φ′), for those values of y. But since the values of y were arbitrary,
∀x,y(φ′) holds, as desired.

Completion of the Proof of Theorem 4.8. We are now equipped to finish the
proof of completeness for the overall system. The proof proceeds by reducing
the general matter of completeness to successively more special cases, and then
the remaining situation will be handled by results which we have already seen.
Suppose that Δ |= Γ where Δ and Γ are any finite sets of formulas. First we
eliminate universal quantifiers. Suppose that Γ consists of {φ} ∪ Γ ′, where φ
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is of the form ∀x(ψ(x)). Choose a fresh variable y. Then Δ |= ψ(y), Γ ′. Going
the other way, if Δ � ψ(y), Γ ′, then we get Δ � ∀y(ψ(y)), Γ ′ by Generalization.
Lemma 4.3 gets us back to Δ � φ, Γ ′. In this way, we have reduced complete-
ness of the entire system to the completeness of the system for sequents whose
conclusions contain only unquantified equations A = B between terms.

Similarly, we may reduce completeness to the case where there are no uni-
versal quantifiers to the left of �. Suppose that Δ contains a quantified formula
∀x(δ(x)). Let Δ′ be the same as Δ, but with ∀x(δ(x)) replaced by

δ(a1), . . . , δ(aNδ
).

By the previous lemma, Δ′ |= ∀x(δ(x)), and hence it entails each formula in
Δ, so Δ′ |= Γ . And assuming Δ′ � Γ , it is trivial to use Specialization to see
that Δ � Γ . Proceeding by induction, we may assume that Δ also contains no
universal quantifiers.

Next, by suitable changes of variables bound by where, arrange that no bound
variable occurs freely anywhere nor occurs in more than one term of Δ or Γ .
We can now eliminate an instance of recursion in Δ: replace the formula

C = (D0 where {x1 = D1, x2 = D2, . . . , xn = Dn} )

(if such a formula belongs to Δ) by the set of formulas

C = D0, x1 = D′
1, x2 = D′

2, . . . , xn = D′
n

where D′
i is Di if xi is a grounded variable and D′

i = x where {x = x} if
xi is ungrounded. Call the resulting set of formulas Δ′. Again, Δ′ semanti-
cally entails each formula in Δ because the solution to the system of equa-
tions {xi = Di} is unique by AFA. Now suppose that Δ′ � Γ . By Lemma 4.9,
Δ′ where {x = D} � Γ where {x = D} . But it is easy to see that Δ proves each
formula in Δ′ where {x = D} . And each formula (A = B) where {x = D} in
Γ where {x = D} proves the corresponding A = B in Γ by the Head axiom,
since the x do not occur in A or B. Hence Δ � Γ .

The argument of the last paragraph shows how to remove the outermost
recursion from one term in Δ. Using it repeatedly, we reduce to the case where
Δ is recursion-free. That is, we need only consider the case in which Δ is a
finite set of equations between explicit terms. Thus, every term occurring in Δ
is either a bare variable, or a set of variables. Our next goal is to show that it
suffices to consider only equations in which at least one side is a bare variable.
So suppose that Δ contains some equation of the form C = D where C and D
are both sets of terms, C = {c1, . . . , cn}, D = {d1, . . . , dm}. We may assume
that n ≥ m. For each surjective map ν from {1, . . . n} onto {1, . . .m}, consider
the set of formulas Δν which consists of Δ with C = D replaced by the set of
formulas ci = dν(i) for each i from 1 to n. Then each Δν semantically entails
each formula in Δ, and hence Δν |= Γ . On the other hand, if each Δν � Γ , then
we use Extensionality to patch these all back together to show that Δ � Γ in a
fashion similar to Example 4.1 above.
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Thus, all that remains is the case where each equation in Δ has a bare variable
on (say) the left-hand side. We next want to ensure that no variable occurs on
the left-hand side of more than one equation in Δ. So, suppose that x = C and
x = D are both elements of Δ. It may happen that x = C is provable from the
remaining elements of Δ. If so, then it may be removed from Δ without harm. If
not, replace x = C by C = D to produce Δ′. Note that Δ′ � x = C, and hence
Δ′ |= Γ ; moreover, if Δ′ � Γ , then Δ � Γ , since Δ � C = D. This change to Δ
may have re-introduced equations which do not have a bare variable on either
side. Apply the previous reduction step to Δ′ again. Continue in this fashion so
long as the set of hypotheses contains two equations with the same variable on
the left-hand side. This process must terminate, because any equation y = E
that is removed from Δ at any stage is provable from the set of hypotheses at
any later stage. Thus, y = E will never have to be added again. Moreover, only
subterms of terms occurring in the original Δ will ever be used, and there are
only finitely many of these.

Thus, we may suppose that Δ is a set of equations, each of the from x = Dx

where x is a variable, Dx is a term, and no variable occurs on the left-hand
side of more than one equation. In this way, Δ is essentially a term substitution.
Furthermore, all equations of the form x = x are instances of the first equational
axiom and may be cut away. So no Dx is identically x. Moreover, if Dx is
any other variable, say y, then we may eliminate the variable x altogether by
substitution: [x �→ y](Δ) |= [x �→ y]Γ ; and if [x �→ y](Δ) � [x �→ y]Γ , then Δ � Γ
since Δ proves every formula in [x �→ y](Δ) and for all A ∈ L, Δ � A = [x �→ y]A
by Replacement via x = y. Thus, we may assume that the right-hand side of
every equation in Δ is not a bare variable; i.e., it is a set.

We have reduced matters to the case of a semantic assertion of the form

x1 = A1, . . . , xn = An |= Γ.

By Lemma 4.6,
|= Γ where {x1 = A1, . . . , xn = An} .

By Lemma 4.5,
� Γ where {x1 = A1, . . . , xn = An} .

And then by an iterated use of Lemma 4.7 and the Bekič-Scott Axiom, we see
that

x1 = A1, . . . , xn = An � Γ.
This concludes the proof of the completeness portion of Theorem 4.8. To see the
decidability, note that converting a term to a simplified (flat) form is effective,
deciding whether flat systems are bisimilar is decidable, as is deciding whether
a variable in a flat system is grounded or not. Further, note that each of the
reductions in the proof of completeness is computable. Formally, the decision
procedure would be recursive, since in our reduction step we needed to know
whether a particular equation was provable from some set of assumptions. How-
ever, each needed instance of the decision problem involves formulas smaller than
those in the original sequent.
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5 Conclusion

The main point of this paper has been to present a language for reasoning about
fixed-point terms involving sets, to present a logical system for the equality of
such terms, and finally to prove the soundness and completeness of the logical
system. The predecessors of this work include many papers on completeness
results for logics of recursion, beginning with [4] and also including [6] and [7].
However, the semantics in these papers are all much more general than what
we study in this paper. This means that the restricted setting of the paper
has made more logical laws valid. Specifically, the Uniqueness axiom and also
Extensionality are new here. Even more, the logical system in this paper is a
sequent calculus, and this is the first time that such a calculus has been used
this area.

We have used the interpretation via non-wellfounded sets as the primary one
in the paper. However, if one prefers, there is always the option of interpreting
fixed point terms via finite pointed graphs modulo bisimulation, as we did in
Section 3.1. One reason for opting for the set semantics is that many of the
semantic principles needed in proving the soundness of the system have already
been shown, mainly in [3]. So this has shortened our presentation. In the other
direction, one can use the more categorical semantics of Section 3.3. But here
there would be more work to do, since the results in this paper are specific to
sets and the power set functor.

We close with a few questions which we have not pursued in this paper but
which we feel should be interesting:

– The universal quantifier turned out to be eliminable in L. So it might be
interesting to extend the syntax to also allow existential quantification.

– L could also be extended to allow infinitary formulas and sets of equations.
Is the system still complete for the appropriate interpretation?

– The language L is only rudimentary when it comes to set theory, being ba-
sically the language of pointed graphs. It should be interesting to enrich the
language with operations such as union or powerset, or with the member-
ship relation, and then look for matching complete deductive systems. (Such
complete systems will of course not exist for sufficiently powerful variants of
L.)

– A final project would be to take seriously the more general semantics which
we presented in Section 3.3 and to present a logical calculus for fixed-point
terms interpreted on initial iterative algebras of finitary set functors.
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Overloading Is NP-Complete

A Tutorial Dedicated to Dexter Kozen

Jens Palsberg

UCLA, University of California, Los Angeles

Abstract. We show that overloading is NP-complete. This solves exer-
cise 6.25 in the 1986 version of the Dragon book.

1 Introduction

Overloading is a form of polymorphism in which a name denotes multiple func-
tions and “the context is used to decide which function is denoted by a particular
instance of the name” [3]. Many programming languages support overloading.
For example, in MATLAB [8] the name mpower is overloaded to denote both:

– a function of two arguments a,b where a is a square matrix and the exponent
b is a scalar, and

– a function of two arguments a,b where a is a scalar and the exponent b is a
square matrix.

When we call mpower in MATLAB, the arguments will be used to decide which
function will be called. Both functions return a square matrix. Similarly, in Java
we can program an interface with two methods that are both named mpower:

interface Math {

SquareMatrix mpower(SquareMatrix a, Scalar b);

SquareMatrix mpower(Scalar a, SquareMatrix b);

}

If a class implements Math and we call mpower on an object of that class, the
arguments will be used to decide which method will be called.

We say that an implementation resolves overloading when it decides which
overloaded function will be called.

How does a language implementation decide which function will be called?
The easiest case is when different functions have different numbers of arguments.
In that case, the number of arguments at the call site is sufficient to decide which
function will be called. The harder case is when different functions have the same
number of arguments, like in the mpower example above. In that case, the types
of the arguments at the call site must be used to decide which function will be
called.

Both MATLAB and Java has a notion of type associated with each value. A
MATLAB value can be a square matrix or scalar, for example, and a Java value
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can be a SquareMatrix object or a Scalar object, for example. The type of a value
determines which operations can be performed on that value. For example, we
can perform mpower on a scalar and a square matrix, but not on two square
matrices.

MATLAB and Java differ in when the type of a value is known to the imple-
mentation. MATLAB has a dynamic type system in which the types are known
at run time but are unknown to the compiler, at least in some cases. So, in some
cases, a MATLAB implementation must decide at run time which overloaded
function to call:

“MATLAB determines which implementation to call at the time of
evaluation in this case.” [12]

Java has a static type system in which the type of every value is known to the
compiler. Java requires that a Java implementation can resolve overloading by
investigating the number and the types of the arguments passed into a method:

“When a method is invoked, the number of actual arguments (and
any explicit type arguments) and the compile-time types of the argu-
ments are used, at compile time, to determine the signature of the
method that will be invoked This enables a Java implementation to de-
cide at compile time which overloaded function to call.” [7]

For dynamically typed languages like MATLAB, overloading may decrease run-
time performance. This happens particularly when MATLAB has to examine
the types of function arguments at run time to decide which overloaded function
to call.

For statically typed languages like Java, overloading is essentially a syntactic
convenience that frees programmers from inventing different names for functions
with similar functionality. Instead, the responsibility to invent such different
names is passed on to the compiler. The compiler uses the types of function
arguments to do a source-to-source transformation that eliminates the use of
overloading by giving different names to different functions. After such a trans-
formation, compilation can proceed as usual.

In this paper we focus on the computational complexity of overloading res-
olution in statically typed languages. In Sections 2–7 we will explain in detail
why overloading resolution is NP-complete for an important case: a λ-calculus
with overloading. Our proof consists of three polynomial-time reductions:

3SAT ≤ Monotone One-in-Three 3SAT ≤ Overloading Resolution

≤ Constraint Solving

and an easy proof that the Constraint Solving problem is in NP. Thus, all of
the listed problems are NP-complete. In Section 8 we will discuss interactions of
overloading and other language features.

Our proof is inspired by two lines of research. The first inspiration is hard-
ware description languages that allow component overloading [17,11]. The idea
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of component overloading is similar to function overloading: the context is used
to decide which component is denoted by a particular instance of a name. Vach-
harajani et al [17], and Mathaikutty and Shukla [11] both sketched reductions
that show that component overloading is NP-complete. Our reduction targets a
λ-calculus with overloading and we give a detailed proof.

The second inspiration is a paper by Kozen et al. [10] who showed how to
reduce a type-checking problem to a constraint solving problem.

In the 1986 version of the Dragon book [1], Exercise 6.25 is to show that
overloading is NP-complete:

**6.25 The resolution of overloading becomes more difficult if identi-
fier declarations are optional. More precisely, suppose that declarations
can be used to overload identifiers representing function symbols, but
that all occurrences of an undeclared identifier have the same type. Show
that the problem of determining if an expression in this language has a
valid type is NP-complete. This problem arises during type checking
in the experimental language Hope (Burstall, MacQueen, and Sannella
[1980]). [1, p.384]

However, the exercise is difficult, we think, and the literature contains no de-
tailed, formal proof, hence this tutorial. We formalize the exercise as a problem
about a λ-calculus, as we explain next.

2 Example Language

Our example language is a λ-calculus with overloading:

(Expression) e ::= x | λx.e | e e
We use x to range over identifiers. Overloaded functions all come from the initial
environment: each free variable of an expression refers to an overloaded function.
We assume that in every expression, the bound variables are distinct and differ-
ent from the free variables.

Each overloaded function has a restricted form of intersection type [5,9]: each
intersection type is an intersection of simple types. When a program uses one
of the overloaded functions from the initial environment, the function gets one
of the simple types in the intersection. In contrast, every programmer-defined
function has a simple type.

Our interpretation of Exercise 6.25 in the 1986 version of the Dragon book
is that the initial environment provides identifiers that are declared with in-
tersection types, while each programmer-defined function leaves an identifier
undeclared, that is, without a type annotation, and required to have a simple
type.

Let us now define the type system formally. We use c to range over a finite
set of at least two base types. The types are:

(Type) s, t ::= c | t→ t

(Intersection Type) u ::= u ∧ u | t
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If u = (. . . ∧ t ∧ . . .), then we write u ≤ t.
A type environments is a finite mapping from identifiers to types of the form

u. We use A to range over type environments.
A type judgment is of the form A � e : t. The type rules are:

A � x : t if A(x) ≤ t (1)

A[x : s] � e : t

A � λx.e : s→ t
(2)

A � e1 : s→ t A � e2 : s

A � e1 e2 : t
(3)

We say that an expression e is typable with a type environment A if and only if
there exists t such that A � e : t is derivable.

We define the resolution of overloading decision problem as follows:

Overloading Resolution
Instance: An expression e and a type environment A.
Problem: Is e typable with A?

Lemma 1. Suppose a derivation of A � e0 : t contains the judgment A′ � e′ : t′.
If x is a free variable of e0, then A(x) = A′(x).

Proof. We proceed by induction on e0. We have three cases.

– If e0 ≡ x, then e′ is also x, so we have A = A′, hence A(x) = A′(x).
– If e0 ≡ λy.e, then from the induction hypothesis and type rule (2), we have

(1) (A[y : s])(x) = A′(x). From (1) and that bound variables are different
from the free variables, we have A(x) = (A[y : s])(x) = A′(x), as desired.

– If e0 ≡ e1e2, then e′ occurs in either e1 or e2. Let us do a case analysis of the
two cases. Suppose e′ occurs in e1. From the induction hypothesis and type
rule (3), we have A(x) = A′(x), as desired. The other case where e′ occurs in
e2 is similar, and also here we immediately get A(x) = A′(x), as desired. �

3 Constraints

We define

(Term) r ::= v | c | r → r

A constraint system over a set of type variables V is a finite collection of con-
straints of the forms:

u ≤ r
r = r′
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where u is an intersection type as defined above, and each variable that occurs
in r or r′ is a member of V .

We use ϕ to range over finite mappings from type variables to types of the
form t.

We define:

ϕ(c) = c

ϕ(r1 → r2) = ϕ(r1)→ ϕ(r2)

A constraint system C has solution ϕ if and only if

– for each constraint u ≤ r in C, we have u ≤ ϕ(r),

– for each constraint r = r′ in C, we have ϕ(r) = ϕ(r′), and

We say that a constraint system C is satisfiable if C has a solution.

Constraint Solving
Instance: A constraint system C.
Problem: Is C satisfiable?

Theorem 1. Constraint Solving is in NP.

Proof. Let C be a constraint system. For each constraint u ≤ r in C, where
u =

∧n
i=1 ti, guess ti0 and replace constraint u ≤ r with the constraint ti0 = r.

The resulting constraint system can be solved with first-order unification which
is doable in polynomial time [13]. �

Let us define a transformation S on constraint systems. The idea of S is to remove
a constraint without changing whether the constraint system is satisfiable.

We define the transformation S:

S(C, v = r) =

{
(C \ { v = r })[v := r] if (v = r) ∈ C and v doesn’t occur in r
C otherwise

Intuitively, S(C, v = r) removes the constraint v = r from C and then replaces
all occurrences of v by r in the resulting constraint system.

Lemma 2. C is satisfiable if and only if S(C, v = r) is satisfiable.

Proof. We have two cases.
If C = S(C, v = r), then the lemma is immediate.
If C contains the constraint v = r, where v doesn’t occur in r, then we consider

the two directions of the lemma.
In the forwards direction, we have immediately that if C has solution ϕ, then

also S(C, v = r) has solution ϕ.
In the backwards direction, suppose S(C, v = r) has solution ϕ. We now have

two cases.
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In the first case, suppose v doesn’t occur in C \ { v = r }. Let { v1, . . . , vm }
be the set of type variables that occur in r but don’t occur in C \ { v = r }. Let
c be a base type. Define:

ψ = ϕ, (v �→ (ϕ(r))[v1 := c, . . . , vm := c]), (v1 �→ c), . . . , (vm �→ c)

We have immediately that ψ solves all constraints in C \ { v = r }. For the
constraint v = r, we have that ψ(v) = (ϕ(r))[v1 := c, . . . , vm := c] = ψ(r) so ψ
also solves v = r.

In the second case, suppose v does occur in C \ { v = r }. Notice that since v
occurs in C \ { v = r }, we have that r occurs in (C \ { v = r })[v := r]. Define:

ψ = ϕ, (v �→ ϕ(r))

We have immediately that ψ solves all constraints in C \ { v = r }. For the
constraint v = r, we have that ψ(v) = ϕ(r) = ψ(r), so ψ also solves v = r. �

4 From Overloading to Constraints

We will now show a reduction of the overloading resolution problem to a con-
straint solving problem. The reduction is useful both for showing that overload-
ing resolution is in NP and that it is NP-hard.

For a expression e0 and a type environment A, we define the set Ve0 of type
variables:

Ve0 = { vx | x is an occurrence of a free variable in e0 }
∪ { vx | λx.e is an occurrence of a subexpression in e0 }
∪ { vλx.e | λx.e is an occurrence of a subexpression in e0 }
∪ { ve1e2 | e1e2 is an occurrence of a subexpression in e0 }

From e0 and A, generate these type constraints over Ve0 :

– For each occurrence of a free variable x in e0, the constraint A(x) ≤ vx.
– For each occurrence of λx.e in e0, the constraint vλx.e = vx → ve.
– For each occurrence of e1e2 in e0, the constraint ve1 = ve2 → ve1e2 .

We use Ce0,A to denote the constraint system generated from e0 and A.

Theorem 2. An expression e0 is typable with type environment A if and only
if Ce0,A is satisfiable.

Proof. For the forwards direction, assume that e0 is typable with type environ-
ment A. In other words, there exists t0 such that A � e0 : t0 is derivable.

We will define a function ϕ : Ve0 → Type. In the derivation of A � e0 : t, each
occurrence of a subexpression e′ of e0 occurs exactly once in a type judgment of
the form A′ � e′ : t′. If the occurrence of e′ is a free variable of e0 or of one of the
forms λx.e and e1e2, then define ϕ(ve′ ) = t′. Additionally, each occurrence of
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a subexpression λx.e′ of e0 occurs exactly once in a type judgment of the form
A′ � λx.e′ : s′ → t′; define ϕ(vx) = s′.

We need to show that Ce0,A has solution ϕ. Let us do a case analysis on the
members of Ce0,A.

– For an occurrence of a free variable x in e0, we have the constraint A(x) ≤ vx.
From the type rule (1) and Lemma 1, we have that there exists a type t such
that A(x) ≤ t and ϕ(vx) = t. We conclude that ϕ solves the constraint.

– For an occurrence of λx.e in e0, we have the constraint vλx.e = vx → ve. From
the type rule (2), we have that there exist types s, t such that ϕ(vλx.e) = s→
t and ϕ(vx) = s and ϕ(ve) = t. We conclude that ϕ solves the constraint.

– For an occurrence of e1e2 in e0, we have the constraint ve1 = ve2 → ve1e2 .
From the type rule (3), we have that there exist types s, t such that ϕ(ve1 ) =
s → t and ϕ(ve2) = s and ϕ(ve1e2) = t. We conclude that ϕ solves the
constraint.

This concludes the proof of the forwards direction.
For the backwards direction, assume that Ce0,A is satisfiable. Let ϕ a solution

of Ce0,A. For each occurrence of a subexpression e′ of e0, let x1, . . . , xn be the
bound variables of the λ-abstractions that enclose e′ in e0. Define

Ae′ = A, (x1 : ϕ(vx1)), . . . , (xn : ϕ(vxn))

Notice that A = Ae0 . We will prove that for each occurrence of a subexpression
e′ of e0, we have

Ae′ � e′ : ϕ(ve′ )

We proceed by induction on e′. We have four cases.

– For an occurrence of a free variable x in e0, we have (1) A(x) ≤ ϕ(vx). Notice
that (2) A(x) = Ax(x). From (1), (2), we have Ax(x) = A(x) ≤ ϕ(vx) so we
can use type rule (1) to conclude Ax � x : ϕ(vx), as desired.

– For an occurrence of a bound variable x in e0, we have from type rule (1)
that Ax � x : ϕ(vx), as desired.

– For an occurrence of λx.e in e0, we have (1) ϕ(vλx.e) = ϕ(vx) → ϕ(ve).
From the induction hypothesis used on e, we have (2) Ae � e : ϕ(ve). Next
notice that (3) Ae = Aλx.e, (x : ϕ(vx)). From (2), (3), and type rule (2), we
conclude (4) Aλx.e � λx.e : ϕ(vx) → ϕ(ve). From (1) and (4), we conclude
Aλx.e � λx.e : ϕ(vλx.e), as desired.

– For an occurrence of e1e2 in e0, we have (1) ϕ(ve1 ) = ϕ(ve2 ) → ϕ(ve1e2).
From the induction hypothesis used on e1 and e2, we have (2) Ae1 � e1 :
ϕ(ve1 ) and Ae2 � e2 : ϕ(ve2 ). Next notice that (3) Ae1 = Ae2 = Ae1e2 . From
(2) and (3) we conclude (4) Ae1e2 � e1 : ϕ(ve1 ) and Ae1e2 � e2 : ϕ(ve2).
From type rule (3) and from (1) and (4), we derive Ae1e2 � e1e2 : ϕ(ve1e2),
as desired.

This concludes the proof of the backwards direction. �
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5 Monotone One-in-Three 3SAT

The Monotone One-in-Three 3SAT problem is an excellent fit for proving that
overloading resolution is NP-hard. Schaefer proved that Monotone One-in-Three
3SAT is NP-complete [14]. Indeed, he proved a more general result with a proof
that is a bit complicated. We will give a straightforward proof that Monotone
One-in-Three 3SAT is NP-complete.

We will use 0,1 to denote the Boolean values false, true, respectively.
Let R be a three-place Boolean relation which is true if and only if exactly

one of its three arguments is true. Thus, R(1, 0, 0) = R(0, 1, 0) = R(0, 0, 1) = 1,
while R(1, 1, 1) = R(1, 1, 0) = R(1, 0, 1) = R(0, 1, 1) = R(0, 0, 0) = 0.

We use ϕ to range over mappings from variables to Boolean values.
We say that a mapping ϕ satisfies a formula if, after we replace each variable

x with ϕ(x), the formula evaluates to 1. We also say that a formula is satisfiable
if there exists a mapping ϕ that satisfies the formula.

We define the function T :

T (z1, z2, z3) = R(z1, a1, a4) ∧R(z2, a2, a4) ∧R(a1, a2, a5) ∧
R(a3, a4, a6) ∧R(z3, a3, f) ∧R(t, f, f)

where in each application of T we have that a1, a2, a3, a4, a5, a6, t, f are fresh
and distinct variables.

We say that ϕ′ extends ϕ if and only if dom(ϕ′) ⊇ dom(ϕ)∧∀x ∈ dom(ϕ′)∩
dom(ϕ) : ϕ′(x) = ϕ(x).

Lemma 3. Let ϕ be an assignment of the variables z1, z2, z3 to Boolean values.
We have that ϕ satisfies (z1 ∨ z2 ∨ z3) if and only if ϕ can be extended to ϕ′ that
satisfies T (z1, z2, z3).

Proof. In the forwards direction, let us extend each of the seven mappings that
satisfy (z1 ∨ z2 ∨ z3) to mappings that also satisfy T (z1, z2, z3):

Mapping z1 z2 z3 a1 a2 a3 a4 a5 a6 t f
ϕ′
1 0 0 1 0 0 0 1 1 0 1 0
ϕ′
2 0 1 0 1 0 1 0 0 0 1 0
ϕ′
3 0 1 1 1 0 0 0 0 1 1 0
ϕ′
4 1 0 0 0 1 1 0 0 0 1 0
ϕ′
5 1 0 1 0 1 0 0 0 1 1 0
ϕ′
6 1 1 0 0 0 1 0 1 0 1 0
ϕ′
7 1 1 1 0 0 0 0 1 1 1 0

In the backwards direction, consider the only mapping 1) ϕ = [z1 �→ 0, z2 �→
0, z3 �→ 0] that doesn’t satisfy (z1 ∨ z2 ∨ z3). Suppose we can extend ϕ to ϕ′ that
satisfies T (z1, z2, z3). From R(t, f, f) we have that ϕ′(t) = 1 and 2) ϕ′(f) = 0.
From R(z3, a3, f), (1), and (2), we have 3) ϕ′(a3) = 1. From R(a3, a4, a6) and
(3), we have 4) ϕ′(a4) = 0. From R(z1, a1, a4) ∧ R(z2, a2, a4) and (1) and (4),
we have 5) ϕ′(a1) = ϕ′(a2) = 1. However, (5) implies that ϕ′ doesn’t satisfy
R(a1, a2, a5), a contradiction. �
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Let us now define the Monotone One-in-Three 3SAT problem.

Monotone One-in-Three 3SAT
Instance: A formula

∧n
i=1R(xi1, xi2, xi3), where each xij is a variable.

Problem: Is the formula satisfiable?

Theorem 3. Monotone One-in-Three 3SAT is NP-complete.

Proof. Monotone One-in-Three 3SAT is in NP because we can guess a mapping
ϕ and then check in polynomial time where ϕ satisfies the formula.

To prove that Monotone One-in-Three 3SAT is NP-hard we will show a
reduction from 3SAT. An instance of 3SAT is a formula of the form F =∧n
i=1(li1 ∨ li2 ∨ li3), where each lij is either a variable xi or the negation of

a variable xi. The 3SAT problem is whether the formula is satisfiable. 3SAT is
NP-complete [6].

Let x1, . . . , xm be the variables used in F . We will define a formula H over
the variables x1, . . . , xm, y1, . . . ym, t, f , where y1, . . . ym, t, f are all distinct and
different from x1, . . . , xm. We will use the helper mapping π:

π(xi) = xi

π(xi) = yi

Now we define H:

H = [

n∧

i=1

T (π(li1), π(li2), π(li3)) ] ∧ [

m∧

j=1

R(xj , yj, f) ] ∧ R(t, f, f)

Notice that H is an instance of Monotone One-in-Three 3SAT. Notice also that,
for each j ∈ 1..m, the clauses R(xj , yj, f1) and R(t, f, f) force any assignment
that satisfiesH to map xj to 1 and yj to 0, or map xj to 0 and yj to 1. The reason
is that R(t, f, f) forces the assignment to map f to 0, and so the assignment
must map exactly one of xj and yj to 1. So, yj plays the role of xj .

Suppose ϕ satisfies F . From Lemma 3 we have that we can extend ϕ to ϕ′

such that ϕ′ satisfies T (π(li1), π(li2), π(li3)). From the observation above about
yj , t, f we have that we can easily extend ϕ′ to ϕ′′ such that ϕ′′ satisfies H.

Conversely, suppose ϕ satisfies H. From Lemma 3 we have that ϕ
satisfies F . �

6 From Monotone One-in-Three 3SAT to Overloading

Let F, T be two base types. Define

u0 = (T → F → F → T ) ∧ (F → T → F → T ) ∧ (F → F → T → T )

For an instance of Monotone One-in-Three 3SAT

H =

n∧

i=1

R(xi1, xi2, xi3)
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that uses the variables y1, . . . , ym. Thus, each xij is one of y1, . . . , ym. We define
the type environment:

A = { (f1 �→ u0), . . . , (fn �→ u0) }
and we define the λ-expression:

e0 = λg.λy1. . . . λym. g (f1x11x12x13) . . . (fnxn1xn2xn3)

Theorem 4. H is satisfiable if and only if e0 is typable with a type
environment A.

Proof. From Theorem 2 we have that e0 is typable with a type environment A
if and only if Ce0,A is satisfiable. So all we need to prove is that:

H is satisfiable if and only if Ce0,A is satisfiable. (4)

Let us calculate Ce0,A:

vλg.... = vg → vλy1.... (5)

vλy1.... = vy1 → vλy2.... (6)

. . .

vλym.... = vym → vg (f1x11x12x13) ... (fnxn1xn2xn3) (7)

vg (f1x11x12x13) ... (fn−1x(n−1)1x(n−1)2x(n−1)3)

= vfnxn1xn2xn3 → vg (f1x11x12x13) ... (fnxn1xn2xn3) (8)
. . .

vg (f1x11x12x13) = vf2x21x22x23 → vg (f1x11x12x13) (f2x21x22x23) (9)

vg = vf1x11x12x13 → vg (f1x11x12x13) (10)

vfixi1xi2 = vxi3 → vfixi1xi2xi3 i ∈ 1..n (11)

vfixi1 = vxi2 → vfixi1xi2 i ∈ 1..n (12)

vfi = vxi1 → vfixi1 i ∈ 1..n (13)

u0 ≤ vfi i ∈ 1..n (14)

Notice that for each constraint in the lines (5)–(13), the left-hand side doesn’t
occur on the right-hand side. So, we can use the S transformation (m+4n) times
on those constraints to produce the following constraint system that we call C ′:

u0 ≤ vxi1 → vxi2 → vxi3 → vfixi1xi2xi3 i ∈ 1..n

From Lemma 2 we have that each of the (m + 4n) applications of S preserves
satisfiability so we have:

Ce0,A is satisfiable if and only if C′ is satisfiable (15)

We can combine (4) and (15) and get that we must prove:

H is satisfiable if and only if C′ is satisfiable (16)
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In the forwards direction, suppose H has solution ϕ. We will use the helper
function δ:

δ(1) = T

δ(0) = F

Define:

ψ(vxij ) = δ(ϕ(xij)) i ∈ 1..n, j ∈ 1..3

ψ(vfixi1xi2xi3) = T

From that H has solution ϕ, we have that for each i ∈ 1..n, exactly one of
ϕ(xij), j ∈ 1..3 is 1, while the other two are 0. So for each i ∈ 1..n, exactly
one of δ(ϕ(xij)), j ∈ 1..3 is T , while the other two are F . We conclude that ψ
solves C′.

In the backwards direction, suppose C′ has solution ψ. We will use δ−1 to
denote the inverse of δ. Define:

ϕ(xij) = δ−1(ψ(vxij )), i ∈ 1..n, j ∈ 1..3

From C′ and the definition of u0, we have that for each i ∈ 1..n, exactly one of
ψ(vxij ), j ∈ 1..3, is T , while the other two are F . So for each i ∈ 1..n, exactly
one of δ−1(ψ(vxij )), j ∈ 1..3, is 1, while the other two are 0. We conclude that ϕ
solves H. �

7 Putting It All Together

Theorem 5. Overloading Resolution and Constraint Solving are both NP-
complete.

Proof. From Theorem 3 we have that (1) Monotone One-in-Three 3SAT is NP-
complete. From (1) and Theorem 4, we have that (2) Overloading Resolution
is NP-hard. From (2) and Theorem 2, we have that (3) Constraint Solving is
NP-hard. From Theorem 1 we have that (4) Constraint Solving is in NP. From
(3) and (4) we have that (5) Constraint Solving is NP-complete. From (5) and
Theorem 2 we have that (6) Overloading Resolution is in NP. From (2) and (6)
we have that Overloading Resolution is NP-complete.

8 Interactions of Overloading and Other Language
Features

While a compiler can resolve overloading for all practical statically typed lan-
guages of which we are aware, the complexity of the resolution algorithm varies
from language to language. The complexity varies because overloading may be
restricted in various ways and because overloading may interact with other lan-
guage constructs. Let us consider some of the possibilities.
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8.1 Type Annotations versus Type Inference

Our example language relies on type inference to assign a type to every bound
variable. The essence of our overloading is NP-complete theorem is that such
type inference must be done by exhaustive search. We have implemented such
a search algorithm for a subset of MATLAB and we found that it works well in
practice.

In contrast to our λ-calculus, Java requires every formal parameter to be
annotated with a type. This changes the complexity of the overloading problem
from NP-complete to polynomial time. To see this, let us first take a look at
what our reduction from Monotone One-in-Three 3SAT to Overloading might
look like if we target Java instead of λ-calculus. For example, we might map the
formula:

R(x1, x2, x3)

to this Java program:

class B { }

class T implements B { }

class F implements B { }

public class Test {

T f(T a, F b, F c) { return new T(); }

T f(F a, T b, F c) { return new T(); }

T f(F a, F b, T c) { return new T(); }

T run() {

B x1,x2,x3;

return f(x1,x2,x3);

}

}

The idea of the Java program is as follows. Class B is a common superclass of
two classes T and F that represent the Boolean values. In class Test, the three
versions of the overloaded method f mimic the intersection type of f in the λ-
calculus program. In the run method, we don’t know what we need to store in
the variables x1,x2,x3 to satisfy the formula so we declare them to be of type B.
The expression f(x1,x2,x3) is the same kind of call that we used in the λ-term.

The Java program doesn’t type check! The problem lies with the type annota-
tion B for the variables x1,x2,x3. The type annotation prevents the expression
f(x1,x2,x3) from type checking because none of the declared f methods take
an argument of type B. If only we could omit the annotation B, then one could
imagine that type inference could assign a type T or F to each of x1,x2,x3.
However, Java doesn’t support such type inference so this style of reduction to
Java doesn’t work.

Let us now explain why overloading resolution in Java can be done in poly-
nomial time. We will do an informal proof by induction on the structure of ex-
pressions. In the base case, we have expressions such as variables and constants
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whose nonoverloaded types are known to the compiler from type annotations
or the language specification. Java allows overloading only of methods so in the
key induction step, we can consider a call of an overloaded method. From the
induction hypothesis we have that the compiler knows a nonoverloaded type for
each argument expression. Recall the quote from Section 1 that says that Java
resolves overloading by using the number and compile-time types of the argu-
ments. Thus the compiler can now either declare the call type correct or give a
type error. This concludes the informal proof for Java.

Notice that the proof relies on type annotations for variables, which is exactly
what ruined the Java example above.

8.2 Overloading and Subtyping

Java has all of overloading, type annotations, and subtyping. Java’s notion of
subtyping presents no new problems for overloading resolution. The reason is
that Java’s type system enables the compiler to know a static type of every
expression, even in the presence of subtyping. Thus, the informal induction proof
in the previous subsection works for Java in this case too. We conclude that also
in the presence of subtyping can we resolve overloading in Java in polynomial
time.

Castagna, Ghelli, and Longo [4] studied a typed λ-calculus in which the pro-
grammer can define overloaded functions. This goes beyond the λ-calculus in
Section 2 where all overloaded functions all come from the initial environment.
As far as we know, the problem of devising a type checker or a type inference
algorithm for their calculus remains an open problem.

8.3 Overloading and Hindley-Milner Polymorphism

Let us consider the notion of polymorphism known as Hindley-Milner polymor-
phism that can be found in such languages as ML and Haskell. If we combine
overloading with Hindley-Milner polymorphism, the result is an undecidable type
system [15,20,16]. The undecidability result has led researchers to look for re-
strictions of overloading. The idea is that Hindley-Milner polymorphism together
with restricted overloading may be decidable. Volpano showed that if we in a
system with Hindley-Milner polymorphism make a Haskell-style restriction on
overloading, the resulting type system is NP-hard [18,19]. Camarao, Figueiredo,
and Vasconcellos studied another restriction on overloading and reported on
experiments with a type checking algorithm [2].

9 Conclusion

We have given a detailed proof of why overloading resolution is NP-complete
for a typed λ-calculus. We hope that the proof techniques will be helpful to
researchers who want to prove similar results for other languages. We also hope
that our paper can help clarify which overloading problems are NP-complete and
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which problems have higher complexity due to interactions with other language
features.

Exercise 1: Design a variant of our calculus that captures the essence of over-
loading in Java. Prove that type checking can be done in polynomial time.

Exercise 2: Consider a variant of our calculus in which every bound variable is
annotated with a simple type, using the notation λx : t.e. What is the complexity
of type checking?

Exercise 3: Consider a variant of our calculus in which we disallow λx.e. What
is the complexity of type checking?

Acknowledgments. We thank Matt Brown, Jakob Rehof, and Alexander Sher-
stov for helpful comments and discussions.
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Abstract. We define an epistemic logic for labelled transition systems
by introducing equivalence relations for the agents on the states of the
labelled transition system. The idea is that agents observe the dynamics
of the system modulo their ability to distinguish states and in the process
learn about the current state and past history of the execution. This is
in the spirit of dynamic epistemic logic but is a direct combination of
Hennessy-Milner logic and epistemic logic. We give an axiomatization
for the logic and prove a completeness theorem with respect to the class
of models obtained by unfolding labelled transition systems.

Dedicated to Dexter Kozen on the occasion of his 60th birthday.

1 Introduction

Dexter Kozen was one of the pioneers of logic and computation. Among his
numerous and varied contributions to the subject was an early joint paper with
Rohit Parikh [1] where they established an elementary proof of the completeness
of the Segerberg axioms for propositional dynamic logic (PDL) simplifying an
earlier proof of Parikh. One of us, Prakash Panangaden, learned basic modal
logic – and many other things – from Dexter when he arrived at Cornell as a
professor in 1985. The elegance of his presentation and the confident way in
which he blasted through all obstacles on the way to establishing a proof had a
profound influence on Panangaden. Over a quarter of a century later, this paper
on a completeness proof for a logic that combines Hennessy-Milner-van Bentham
logic with epistemic logic, bears the imprint of Dexter’s masterful presentation
of the intricacies of the completeness proof of PDL.

Concurrency theory has been built upon the implicit assumption of omni-
science of all the agents involved, but for many purposes – notably security
applications – it is crucial to incorporate and reason about what agents “know”
or do not know. Tracking the flow of information is the essence of analyses of se-
curity protocols. Equally crucial is the idea that different participants may have
different views of the system and hence know different things. The purpose of
this paper is to meld traditional concurrency concepts with epistemic concepts
and define a logic with both dynamic and epistemic modalities.

Epistemic logic has been a major theme within distributed systems ever since
the groundbreaking paper of Halpern and Moses [2], but has been strangely
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slow to influence concurrency theory. A few investigations have appeared but,
as far as we know, there has not been a thorough integration of epistemic con-
cepts with the traditional theory of labelled transition systems. Typically one
sees a multimodal logic closely tied to the syntax of some particular process
calculus with reasoning principles that are not proven complete in any sense [3].
Such logics are interesting and useful but their close tie to a particular process
formalism obscures the general principles. Another closely related strand is, of
course, dynamic epistemic logic [4] which, as the name makes manifest, is all
about how knowledge evolves. However, the bulk of this work is about actions
that communicate information, perhaps through messages or announcements,
rather than about general transitions that could change basic facts about the
state. A few papers indeed deal with so-called fact-changing actions but, as far as
we know, the theory is still geared toward communication actions. Our goals are
to develop the theory for a suitable general class of labelled transition systems
and to formulate axioms that are provably complete with respect to this class
of models. We provide more detailed comparisons with related work in a later
section after the presentation of our framework.

The standard route to modelling epistemic concepts is to use Kripke models:
these are sets of states equipped with indistinguishability (equivalence) rela-
tions [5]. We will equip the states with a labelled transition system structure
as well and impose coherence conditions between the two kinds of relations.
The resulting modal logic is a blend of Hennessy-Milner logic, epistemic logic
and temporal modalities. The essential point is that one can reason about how
knowledge changes as transitions occur. There are many variations that one could
contemplate and the particular formalism that we have developed is geared to-
ward representing the unfolding of a labelled transition system through time
taking into account different agents’ differing views of the labelled transition
system.

The paper is organized as follows. In the next section we review background
material on labelled transition systems and Hennessy-Milner logic. In Section 3
we define the class of transition systems that we work with; they are called history
labelled transition systems and are unfoldings of the usual labelled transition
systems, with the addition of equivalence relations on states. In Section 4 we
define the logic and its semantics. In Section 5 we prove the weak completeness
theorem. There is an easy argument, which we present in Section 5, that shows
that a strong completeness theorem is not possible. The final sections discuss
related work and conclusions.

2 Background

We assume familiarity with basic concepts like labelled transition systems (LTSs)
and epistemic logic. For the benefit of readers who may not be familiar with these
ideas we give a brief overview in this section. An excellent exposition of general
modal logics is the text book by Blackburn et al. [6] called Modal Logic.



Completeness for Epistemic Logic on LTSs 221

Definition 1. A labelled transition system is a triple (S,A,−→⊆ S × A × S),
where S is a set of states, A is a set of actions and −→ is a labelled transition
relation. We will write s

a−→ s′ when (s, a, s′) ∈−→.

The idea is that S represents the possible states of a dynamical system. The
system can perform certain actions and these cause a change in the state. The
resulting state is not completely determined by the initial state and the action
so that one has a transition relation rather than a function. Some actions may
not be possible in some states, if an action a is possible from state s we say that
a is enabled in s.

There are various senses in which states may be deemed to be equivalent.
A canonical one is called bisimulation. The idea of bisimulation is that if the
actions possible from two states and all of their successors do not distinguish
them, they should be deemed equivalent. Here is a formal definition.

Definition 2. We say that an equivalence relation R on the state space S of
an LTS is a bisimulation relation if whenever sRt and s

a−→ s′ then there exists
some t′ such that t

a−→ t′ with s′Rt′. We say that s and t are bisimilar if there
is some bisimulation relation relating them.

Since R is required to be an equivalence relation it follows that the analogous
condition holds with the roles of s and t exchanged. The properties of bisim-
ulation are discussed at length in the concurrency theory literature, see, for
example [7,8] or in the modal logic literature, see, for example [9].

There is a remarkable theorem due independently to van Benthem and to
Hennessy and Milner that gives a modal characterization of bisimulation. The
logic has come to be called Hennessy-Milner logic. The basic constructs are the
boolean connectives and a modal operator written 〈a〉 or its dual [a], where
the a’s appearing in the formulas are actions associated with the LTS being
studied. The definition of satisfaction for these formulas follows the standard
inductive construction due to Tarski with only the modal operator requiring
explicit explanation. This is given by s |= 〈a〉φ iff s

a−→ s′ and s′ |= φ. The
fundamental theorem is the following.

Theorem 3. Assume that (S,A,−→) is a labelled transition system with the

property that for a given s and a the set of s′ such that s
a−→ s′ is finite1.

Then two states s and t are bisimilar iff they satisfy all the same formulas of
Hennessy-Milner logic.

The basic setup for modelling epistemic logic is due to Kripke [10]; see Reasoning
About Knowledge by Fagin et al. [5]. Consider the set S of possible states2 of
some system. We have a finite set of agents, typically written I = {i, j, . . .}. We
define a modal operator – one for each agent – written Ki. The idea is that the
formula Kiφ means that the agent i knows the fact φ. The axioms usually used
are due to Hintikka [11]:

1 Such systems are said to be image finite.
2 They are often called possible worlds in the philosophical literature.
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0. All propositional tautologies.
1. Kiφ⇒ φ Only truths can be known.
2. Ki(φ⇒ ψ)⇒ (Kiφ⇒ Kiψ) Deductive closure.
3. Kiφ⇒ KiKiφ Positive introspection.
4. ¬Kiφ⇒ Ki¬Kiφ Negative introspection.

These are used together with the following rules of inference.

φ

Kiφ

φ φ⇒ ψ

ψ

The semantics for this logic is given in terms of indistinguishability relations.
The idea is that a particular agent has only limited awareness of everything that
might be true in a state. In particular, an agent might not be able to distinguish
two states. We associate with each agent an equivalence relation that models its
ability to distinguish two states.

Definition 4. A Kripke structure is a set S of states, a finite set I of agents,
a set P of primitive propositions, for each state s a set π(s) ⊂ P and for each
i ∈ I an equivalence relation ∼i on S.
The meaning of an atomic proposition is built into the definition of the Kripke
structure: s |= p iff p ∈ π(s); the meaning of the boolean connectives is standard.
We define the meaning of the modal formula as follows: s |= Kiφ iff for every
state s′ such that s ∼i s′, s′ |= φ. The fundamental completeness theorem is
that a formula is provable from the Hintikka axioms if and only if it is true in
all Kripke structures.

3 Histories

The main contribution of this paper is to study how an agent’s knowledge
changes as transitions occur in a labelled transition system. The basic picture is
that the agent has a limited view of the states of the labelled transition system
and this is modelled by an equivalence relation on the states of the system just
as in a Kripke structure. The agent does not choose the actions to perform but
can see which action has happened and tries to deduce from this where it is. Our
temporal-epistemic logic will be designed to handle this type of reasoning.

The semantics of the formulas will be given in terms of histories or runs, as
with the semantics of Halpern and Moses [2,12], but we view the runs as coming
from the executions of a labelled transition system (LTS). In fact, we will view
the set of runs as forming a labelled transition system in its own right. This will
give a “branching-time” logic rather than a linear-time logic. We will use the box
and diamond modalities of Hennessy-Milner logic [13] rather than the “always”
and “eventually” modalities of temporal logic. In this section, we motivate the
need for this particular combination of modalities.

The basic set up for a purely epistemic (static) logic is a set of states with equiv-
alence relations, one for each agent. If we wish to incorporate this into a given la-
belled transition system the natural step is to define equivalence relations on the
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states of the labelled transition system. If one does this näıvely one gets situations
where one cannot say what an agent has learned from its history.

Example 1. Consider the following simple labelled transition system:

s0 s1

s2 s3,p

a

��

i ������

i
������

where the wiggly line refers to the indistinguishability equivalence relation of agent
i and the proposition p holds in the state s3 and in no other state. The agent i in
state s0 cannot tell whether he is in s0 or in s1. Similarly, in s2 he cannot tell
whether he is in s2 or in s3. However, if the agent is in s0 and then observes an
a action then he “knows” he must have been in s0 and further, that he is in s2
now. No purely state-based semantics can say this. It is only because the agent
“remembers” how he got there that one can say anything. Thus, a purely state
based semantics is not adequate for even the simplest statements about evolving
knowledge for agents with memory and basic reasoning abilities. �

The basic paradigm that we have in mind is that the agent is observing a tran-
sition system: the agent can see the actions and can remember the actions but
cannot control the actions nor see which actions are available at a given state.
The extent to which an agent can “see” the state is what the indistinguishability
relation spells out.

In order to give the semantics of the epistemic modalities we need to extend
the equivalence relation from states to histories. We formalize labelled transition
systems, histories and this equivalence relation as follows.

Definition 5. An epistemic labelled transition system is a set of states,
S, a finite set of actions A, and, for every a ∈ A, a binary relation, written
a−−→, on the states. We write s

a−−→ s′ instead of (s, s′) ∈ a−−→. In addition, there
is a finite set of agents, denoted by letters like i, j, . . .. For each agent i there is
an equivalence relation, written ∼i defined on S.

The relation
a−−→ can be nondeterministic and does not have to be image-finite 3.

From now on we always mean an epistemic labelled transition system when we
use the phrase “labelled transition system.” We also assume that all actions are
visible, that is, there are no hidden actions (commonly denoted by τ).

Definition 6. A history is a finite alternating sequence of states and actions

s0a1s1a2s2 . . . ansn,

where, for each l ∈ {0, . . . , n− 1}, sl al+1−−−−→ sl+1.

3 “Image finite” means that for a given s and a the set {s′|s a−−→ s′} is finite.
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Given a pair of histories, an agent can tell immediately that they are not the
same if they do not have exactly the same action. In order to say this it will be
convenient to define the notation act(h) to mean the action sequence extracted
from the history h; it has an evident inductive definition. Given a history h, we
write h[n] for the nth state in h. Thus if h = s0a1s1a2s2a3s3, act(h) = a1a2a3
and h[0] = s0 while h[2] = s2. We write |h| for the length of the sequence of
states in h.

Definition 7. We say that the histories h1 and h2 are indistinguishable by
agent i, written h1 ∼i h2, if: (i) act(h1) = act(h2) and (ii) for all 0 ≤ n ≤
|h1|(= |h2|), h1[n] ∼i h2[n].

The use of the same notation for indistinguishability of states and histories
should not occasion anxiety for the reader as the context will disambiguate
which we mean; this usage is meant to emphasize the tight connection between
the concepts.

It is useful to have both past and future modalities. We will define the syntax
precisely in the next section, for the moment we note that 〈−〉 means one step
in the past and 〈+〉a means possibly after an a-step into the future (we will
see later why the future operator is concerned with possibility while the past
operator is not). Consider the labelled transition system we have used for our
example above. Suppose we introduce the proposition @s to mean “at the state
s” then we want to be able to say things like s0as2 |= Ki〈−〉@s0. Note that we
cannot say s0 |= Ki@s0, so we need the past operator to express the idea that
agent i learns where he was in the past, or, in general, learns that a fact used
to be true. Note that, for this example, s0as2 |= 〈−〉Ki@s0 does not hold, even
though s0as2 |= Ki〈−〉@s0 does.

Note that every history has a beginning and every state has a finite number
of predecessors: in short the prefix order on histories is well founded. This will
cause most of the difficulties in the completeness proof.

Example 2. Why do we need the Hennessy-Milner like modalities indexed by
actions? Consider the following simple labelled transition system:

s0 s1

s2,p s3 s4

a

��
b

��

a

���
��

��
��

��
��

i ������

i
������

which is like the previous example except for the addition of the extra state and
transitions and the fact that p is true in s2 instead of s3. We would like to be
able to say s0 |= 〈+〉aKip. Note that s4 can be distinguished by i from any other
state. Without the ability to label the diamonds with a we would have to write
s0 |= 〈+〉Kip which is simply mot true. The point is that the agents can see the
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labels on the transitions and use them to gain knowledge; in order to describe
this the action labels must be on the Hennessy-Milner modalities. �

The logic, though its semantics is given in terms of runs, is actually a branching
time logic. It is applied to a very specific type of transition system that arises
as the set of histories of general labelled transition system. The “states” are
histories and the transitions are of the form

s0a1s1 . . . ansn
a−−→ s0a1s1 . . . ansnas

whenever sn
a−−→ s is a transition of the underlying labelled transition system.

The key features of these labelled transition systems of histories are: a well
foundedness property for the backward transitions, determinacy for the back-
ward transitions and a few other properties.4 In the course of the completeness
proof we will spell out these properties and then proceed with the axiomatization
and completeness theorem.

Example 3. Here is an example about why the identity of actions is important.

s0

a,c

���
��
��
��
�

a,b

����
��
��
��

s2s1 ∼i

If this system starts out in s0 and an a action occurs, then agent i will not know
which state he is in, because s1 and s2 are equivalent for the agent. But if the
system does a b action, then the agent knows he is in s1 because he observes the
b action and s1 is the only state that a b action leads to. Similarly, if the system
does a c action, then the agent knows that the system is in s2. �

Example 4. This example shows why we want to be able to combine epistemic
modalities and (past or future) temporal modalities. Here p represents some
proposition.

s0
p

a

��

s1
¬p

a

��

∼i

s2
p

s3
¬p∼i

If the system starts out in s0 or s1, then after an a action, the agent does not
know whether p is true, but he does know that if p is true now, then it must
have been true in the first state, and if p is false now, it must have been false in
the first state. �

4 In fact, such transition systems arise naturally as unfoldings of general labelled
transition systems.
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Example 5

s0
p

a

��

a

���
��

��
��

��
��

s1
¬p

a

��

∼i

s2
p

s3
¬p∼i

If this system starts out in s0 or s1 and then an a action occurs, then after the
action, the agent does not know whether p is true, but he knows that if p is true
now, then it was true in the start state. But he also knows that if p is not true
now, then p may or may not have been true in the start state. �

3.1 History Systems

First we will explain how to translate any LTS with equivalence classes into an
equivalent history LTS: an LTS with designated starting states, where the entire
history of any run starting from a starting state is determined by its current
state.

Definition 8. Given the LTS (S0,A, I,−−→
0
,∼0), where S0 is the set of states, A

is the set of actions, I the set of agents, −−→
0
⊆ S0×A×S0 is the transition relation

and ∼0⊆ S0 × I × S0 is the indistinguishability relation, inductively construct
the unfolding (S1,A, I,−−→

+
,−−→− ,

∗−−→
+
,

∗−−→− ,∼1), where −−→
+
⊆ S1 × A × S1,

−−→− ⊆ S1 ×A× S1,
∗−−→
+
⊆ S1 × S1 and

∗−−→− ⊆ S1 × S1, as follows:

1. If s ∈ S0 then s ∈ S1.
2. If s0.a1.s1.a2...sn ∈ S1 and sn

a−−→
0

s then s0.a1...sn.a.s ∈ S1 and s0.a1...sn
a−−→
+

s0.a1...sn.a.s.

3. If s0.a1...sn, s0.a1...sn.a.s ∈ S1 then s0.a1...sn.a.s
a−−→− s0.a1...sn.

4. If s0.a1...sn ∈ S1 then s0.a1...sn
∗−−→
+

s0.a1...sn.

5. If s0.a1...sn, s0.a1...sn.an+1...a.s ∈ S0 then s0.a1...sn
∗−−→
+

s0.a1...sn.an+1...a.s.

6. If s0.a1...sn ∈ S1 then s0.a1...sn
∗−−→− s0.a1...sn.

7. If s0.a1...sn, s0.a1...sn.an+1...a.s ∈ S0 then s0.a1...sn.an+1...a.s
∗−−→− s0.a1...sn.

8. If s, t ∈ S0 and s ∼0
i t then s ∼1

i t.

9. If s, t ∈ S1 and s ∼1
i t and s

a−−→
+

s.a.s′ and t a−−→
+

t.a.t′ and s′ ∼0
i t

′ then

s.a.s′ ∼1
i t.a.t

′.

Definition 9. An LTS with agent equivalence classes and with transition rela-
tions −−→

+
⊆ S1 ×A× S1, −−→− ⊆ S1 ×A× S1,

∗−−→
+
⊆ S1 × S1 and

∗−−→− ⊆ S1 × S1

is called a history-LTS if it satisfies the following properties:
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1. Forward and backward transitions are converse: s
a−−→
+

t iff t
a−−→− s.

2. There is only one way to reach each state: if s
a−−→
+

t then for all states s′

and all actions b, if s′ b−−→
+

t then s = s′ and a = b.

3. If we let −−→
+

=
⋃
a∈A

a−−→
+

, then
∗−−→
+

is the transitive reflexive closure of
−−→
+

.

4. If we let −−→− =
⋃
a∈A

a−−→− , then
∗−−→− is the transitive reflexive closure of

−−→− .

5. There are no infinite backward paths: it is impossible to have an infinite
chain s0 −−→− s1 −−→− ... −−→− sn −−→− ....

6. ∼i is transitive, reflexive and symmetric for each agent i.
7. If s1 ∼i t1 and there exists a state s0 and an action a such that s0

a−−→
+

s1

then there exists a state t0 such that t0
a−−→
+

t1 and s0 ∼i t0.
These properties capture the idea that a history LTS is exactly what we get
when we unfold the paths of an LTS with agent equivalence relations; a formal
proof is straightforward. At each stage there is possible future branching but
the past is determined in a particular history. Thus the past modalities are like
LTL modalities but not the future modalities. The starred modalities give one
the power of “always” and “eventually” operators in temporal logics. A history
is assumed to have a starting point so it must be well founded.

4 The Logic and Its Semantics

In this section we present the logic. It allows us to discuss what is true at a
certain state, what was true in the past, what agents know at at the current
state, and what may or must be true in the future.

We assume a finite set of agents I, a finite set of actions A, and a countable
set of propositions Q. In the following definition, a ∈ A, i ∈ I, and q ∈ Q.

Definition 10 (Syntax)

φ := � | q | 〈+〉aφ | 〈−〉aφ | 〈+〉∗φ | 〈−〉∗φ | Kiφ | ¬φ | φ ∧ φ
As usual, we assume the boolean constants ⊥ = p ∧ ¬p and � = ¬⊥ and the
boolean operators ⇒,∨, ⇐⇒ . In addition we define

[−]aφ = ¬〈−〉a¬φ [+]aφ = ¬〈+〉a¬φ,
[−]

∗
φ = ¬〈−〉∗¬φ, [+]

∗
φ = ¬〈+〉∗¬φ,

〈−〉φ =
∨

a∈A
〈−〉aφ, 〈+〉φ =

∨

a∈A
〈+〉aφ,

[−]φ = ¬〈−〉¬φ, [+]φ = ¬〈+〉¬φ.
In order to define the semantics we consider the (oriented) labeled graphs over
A. These capture sets of histories as we defined them in the previous section.
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The nodes of the graph are states and the transitions are labelled by actions in
A. A path through the graph is a history.

If G = (S,
a−→)a∈A is a labelled graph, we denote by −→ the relation

⋃

a∈A

a−→

and by
∗−−→ the reflexive-transitive closures of −→ respectively.

Definition 11 (Labelled forest5). A labelled forest over A is a labelled graph

G = (S,
a−→)a∈A such that

1. for arbitrary s, s′, s′′ ∈ S, s′ −→ s and s′′ −→ s implies s′ = s′′;
2. there exists no infinite sequence s0, s1, .., sk, .. ∈ S such that si+1 −→ si for

each i ∈ N; i.e. it is well-founded to the past.

The support of a forestF , denoted by supp(F), is the set of its nodes. Give a labelled
forest F , we say that an equivalence relation ≈⊆ supp(F) × supp(F) reflects the

branching structure if whenever s ≈ t, the existence of a transition s′ a−→ s implies
the existence of t′ ∈ supp(F) such that t′ a−→ t and s′ ≈ t′. Notice that this is a
backward bisimulation property; it is a backward preservation property.

Definition 12 (Epistemic Frame). Given a set I (of agents), an epistemic
frame is a tuple E = (F , (≈i)i∈I), where F is a labelled forest over A and (≈i)i∈I
is an indexed set of equivalence relations on supp(F) such that for each i ∈ I,
≈i preserves the branching structure.

We call the relation ≈i the indistinguishability relation of agent i ∈ I. Observe
that an epistemic frame defines a unique history-LTS and a history-LTS is sup-
ported by a unique epistemic frame.

In the following definition we write s, t, r with or without subscripts for states, p
and variants for propositions,φ, ψ for formulas and a for actions and i for agents.

Definition 13 (Semantics). The semantics is defined for an epistemic frame
E = (F , (≈i)i∈I), a state s ∈ supp(F) and an interpretation function Prop :
supp(F) −→ 2P , as follows.

s |= � for all s.
s |= p if p ∈ Prop(s).
s |= 〈+〉aφ if there exists a state t such that s

a−−→ t and t |= φ.

s |= 〈−〉aφ if there exists a state r such that r
a−−→ s and r |= φ.

s |= 〈+〉∗φ if there exist s1, ..., sn ∈ S and a1, ..., an ∈ A such that

s
a1−−→ s1

a2−−→ s2
a3−−→ ...

an−1−−−−→ sn−1
an−−−→ sn and sn |= φ.

s |= 〈−〉∗φ if there exist s0, ..., sn−1 ∈ S and a1, ..., an ∈ A such that

s0
a1−−→ s1

a2−−→ ...
an−1−−−−→ sn−1

an−−−→ s and s0 |= φ.
s |= Kiφ if for all t such that s ∼i t, t |= φ.
s |= ¬φ if it is not the case that s |= φ.
s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2.

5 We call it labelled forest because it is a set of labelled trees.
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Now we have defined our basic operators. For convenience, we also define other
operators as shorthand for certain combinations of these basic operators:

〈+〉φ :=
∨

a∈A
〈+〉aφ

〈−〉φ :=
∨

a∈A
〈−〉aφ

[+]aφ := ¬〈+〉a¬φ
[−]aφ := ¬〈−〉a¬φ
[+]φ :=

∧

a∈A
[+]aφ

[−]φ :=
∧

a∈A
[−]aφ

[+]∗φ := ¬〈+〉∗¬φ
[−]∗φ := ¬〈−〉∗¬φ
Liφ := ¬Ki¬φ

Note that [+]φ = ¬〈+〉¬φ and [−]φ = ¬〈−〉¬φ. The semantics of these derived
operators are:

s |= ⊥ never.

s |= [+]aφ iff for any t ∈ supp(F) s.t. s
a−→ t, t |= φ,

s |= [−]aφ iff for any t ∈ supp(F) s.t. t
a−→ s, t |= φ,

s |= [+]∗φ iff for any t ∈ supp(F) s.t. s
∗−−→ t, t |= φ,

s |= [−]∗φ iff for any t ∈ supp(F) s.t. t
∗−−→ s, t |= φ.

If we have an epistemic frame E , a valuation is a map ρ : supp(F) −→ 2P which
provides an interpretation of the propositions in the states of E . If a formula φ is
true in a given epistemic frame E and state swith a valuation ρwe write E , s, ρ |= φ
and we say that (E , s, ρ) is a model of φ. In this case we say that φ is satisfiable.
Given an arbitrary φ ∈ L, if for any epistemic frame E = (F , (≈i)i∈I), any state
s ∈ supp(F) and any valuation ρ, E , s, ρ |= φ we say that φ is valid and write |= φ.
We also write E , s, ρ |= Φ, where Φ is a set of formulas if it models every formula
in the set Φ. We write Γ |= φ if any model of Γ is a model of φ.

Example 6. Here is a more complicated example with multiple agents6 which we
describe as an illustration of our logic.

The situation is as follows: There are three agents, one diamond, and a bag. The
diamond can either be held by one of the agents or it can be in the box. Each
agent can perform two actions: reach into the bag and take the diamond if it is
there, and drop the diamond into the bag, or pretend to drop it. After dropping
or pretending to drop the diamond, the agent shows the other agents that his

6 This example was developed by Caitlin Phillips.
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hands are empty, so it is impossible to keep the diamond while pretending to
drop it. On the other hand, if the agent does not have the diamond, he can
still pretend to drop it in the box. If the agent reaches into the box to take the
diamond, he will take it if it is there, and will not take it if it is not there.

Here is the transition system:

I

Di

��

Pi,Pj ,Pl,Dj ,Dl

��

N

Pi

��

Pj

		
Pl



 Di,Dj ,Dl

��

J

Dj

��

Pi,Pj ,Pl,Di,DlL

Dl

��

Pi,Pj ,Pl,Di,Dj

��

The agents are i, j, and l. In state N , no one has the diamond, and in states I,
J , and L, agents i, j, and l respectively have the diamond. Action Pi represents
agent i picking up or pretending to pick up the diamond and action Di represents
agent i dropping or pretending to drop the diamond.

The equivalence classes are as follows:

N ∼i J ∼i L
N ∼j I ∼j L
N ∼l I ∼l J .

We use as propositions @I, @J , @L and @N ; each proposition is true only in
the corresponding state and in each state only the corresponding proposition is
true. For example, the only proposition true in state I is @I. We write Prop for
this set of 4 propositions. Now we consider the formulas

φ1 =
∧

X∈Prop

X ⇒ KlX

φ2 = 〈−〉Pl
@N

φ3 =
∨

X∈Prop

KlX

The first formula says that if any of the propositions are true then l knows it:
in short l knows where the diamond is. Of course this formula is not universally
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true, it might or might not be true depending on the situation. The second
formula is true for a history where the immediately preceding action is Pl (l
picks up the diamond) and in the immediately preceding state nobody had the
diamond (i.e. it was in the bag). In other words φ2 describes the situation where
the diamond was in the bag and l has just picked it up. The formula φ3 says
whatever the state happens to be, l knows it. Here are two formulas that are
true in every state of the unfolded labelled transition system (the history LTS):

φ2 ⇒ [+]
∗
φ1 and φ3 ⇒ [+]

∗
φ1.

The first is true because l has picked up the diamond and can now track its
movements precisely for all future moves since all actions are visible to him. The
second statement is slightly more general, it says that once l knows where the
diamond is he can track its future exactly.

Here is another example of reasoning within this system. We define φ4 to be
like φ1 except that we have Ki instead of Kl and φ5 is like φ1 except that Kj

replaces Kl. Now we can conclude that the following formula is true in every
state

〈−〉Di
〈−〉Dj

〈−〉Dl
⇒ [+]∗(φ1 ∧ φ2 ∧ φ3).

What we cannot say in this logic is that the location of the diamond is common
knowledge. �

5 A Complete Axiomatization

We assume the axioms and rules of classical propositional logic. Because we have
5 independent modalities in our logic (Ki, 〈+〉a, 〈−〉a, 〈+〉∗ and 〈−〉∗) we expect
to have, in addition, five classes of axioms (one for each modality) reflecting the
behaviour of that modality in relation to Booleans. In addition, we will have a
few other classes of axioms describing the relations between various modalities.
For instance, 〈+〉a and 〈−〉a are in a certain duality supported by our intuition
about time, so we expect to have some axioms relating these two. Similarly
between 〈+〉∗ and 〈−〉∗. We also have some clear intuition about the relation
between time transition and knowledge update that will be characterized by
some axioms combining dynamic and epistemic operators.

The axioms of L are presented in Table 1.
Many of the lemmas apply generically to 〈〉 or [] modalities and the proofs are

essentially identical for the different variants. To streamline some proofs, we use
the tuple of symbols (�,�) to represent an arbitrary tuple of type (〈−〉a, [−]a),
(〈+〉a, [+]a), (〈−〉, [−]), or (〈+〉, [+]). Similarly, (�∗,�∗) represents (〈+〉∗, [+]∗)
or (〈−〉∗, [−]∗). We also use (�x,�x) to represent an arbitrary tuple of type
(〈−〉a, [−]a), (〈+〉a, [+]a), (〈−〉, [−]), (〈+〉, [+]), (〈+〉∗, [+]∗) or (〈−〉∗, [−]∗). With
these notations, the axioms (A1),(A2), (B1), (B2), (C1), (C2) and (D1), (D2)
cn be regarded as instances of (X1), (X2). Similarly, (C3), (C4) and (D3), (D4)
are instances of (X3), (X4).
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Table 1. Hilbert-style axiomatization for L

(A1): � [+]aφ ∧ [+]a(φ⇒ ψ) ⇒ [+]aψ
(A2): If � φ then � [+]aφ

(B1): � [−]aφ ∧ [−]a(φ⇒ ψ) ⇒ [−]aψ
(B2): If � φ then � [−]aφ
(B3): � 〈−〉a� ⇒ ∧

a�=b[−]b⊥
(B4): � 〈−〉aφ⇒ [−]φ

(AB1): � φ⇒ [+]a〈−〉aφ
(AB2): � φ⇒ [−]a〈+〉aφ

(C1): � [+]∗φ ∧ [+]∗(φ⇒ ψ) ⇒ [+]∗ψ
(C2): If � φ then � [+]∗φ
(C3): � [+]∗φ↔ (φ ∧ [+][+]∗φ)
(C4): � [+]∗(φ⇒ [+]φ) ⇒ (φ⇒ [+]∗φ)
(D1): � [−]∗φ ∧ [−]∗(φ⇒ ψ) ⇒ [−]∗ψ
(D2): If � φ then � [−]∗φ
(D3): � [−]∗φ↔ (φ ∧ [−][−]∗φ)
(D4): � [−]∗(φ⇒ [−]φ) ⇒ (φ⇒ [−]∗φ)

(BD1): � 〈−〉∗[−]⊥

(E1): � Kiφ ∧Ki(φ⇒ ψ) ⇒ Kiψ
(E2): If � φ then � Kiφ
(E3): � Kiφ⇒ φ
(E4): � Kiφ⇒ KiKiφ
(E5): � ¬Kiφ⇒ Ki¬Kiφ

(BE1): � 〈−〉aKiφ⇒ Ki〈−〉aφ

(X1): � �xφ ∧ �x(φ⇒ ψ)⇒ �xψ
(X2): If � φ then � �xφ
(X3): � �∗φ↔ (φ ∧ ��∗φ)
(X4): � �∗(φ⇒ �φ)⇒ (φ⇒ �∗φ)

From (X1) and (X2) alone we can prove a lemma which can be instantiated to
all the particular instances. This is a standard lemma of modal logic.

Lemma 1. 1. If � φ⇒ ψ, then � �xφ⇒ �xψ and � �xφ⇒ �xψ.
2. If � φ⇒ ψ, then � Kiφ⇒ Kiψ.
3. � 〈−〉aφ⇒ [−]aφ and � 〈−〉φ⇒ [−]φ.

Proof. 1. From (X2), � φ⇒ ψ implies � �x(φ⇒ ψ). If we use this with � �x(φ⇒
ψ)⇒ (�xφ⇒ �xψ), which is equivalent to (X1), we obtain � �xφ⇒ �xψ.

To prove the second implication, we start from � ¬ψ ⇒ ¬φ and apply the first
result which gives us � �x¬φ ⇒ �x¬ψ. Using De Morgan we derive � �xφ ⇒
�xψ.
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2. It is proved in the same way as 1; in fact K is a box-like modality.

3. From (B4) we have � 〈−〉aφ ⇒
∧

a

[−]aφ which implies � 〈−〉aφ ⇒ [−]aφ.

The same axiom implies �
∧

a

(〈−〉aφ⇒ [−]φ) which is equivalent to �
∨

a

〈−〉aφ⇒
[−]φ which implies � 〈−〉φ⇒ [−]φ.

As usual, we say that a formula φ ∈ L is provable, denoted by � φ, if it can be
proved from the axioms in Table1 and boolean rules. We say that φ is consistent,
if ¬φ is not provable from the axioms.

Given Φ, Ψ ⊆ L, Φ proves Ψ if from the formulas of Φ and the axioms we
can prove each ψ ∈ Ψ ; we write Φ � Ψ . Let [Φ] = {ψ ∈ L | Φ � ψ}; this is the
deductive closure of Φ. Φ is consistent if it is not the case that Φ � ⊥.

For a sublanguage L ⊆ L, we call Φ L-maximally consistent if Φ is consistent
and no formula of L can be added to it without making it inconsistent. The
following lemma follows directly from the definition of maximal consistency.

Lemma 2. If Γ is a consistent set of formulas then the following assertions are
true.
1. if �x� ∈ [Γ ] and �xφ �∈ [Γ ], then {ψ ∈ L | �xψ ∈ [Γ ]}∪{¬φ} is consistent.
2. if �xφ �∈ [Γ ], then {ψ ∈ L | �xψ ∈ [Γ ]} ∪ {¬φ} is consistent.

Proof. Let Λ = {ψ ∈ L | �xψ ∈ [Γ ]}. Suppose that Λ ∪ {¬φ} is inconsistent.
Then there is a finite set {f1, .., fn} ⊆ Λ s.t. � f1 ∧ .. ∧ fn ⇒ φ. Hence, �
�x(f1 ∧ .. ∧ fn) ⇒ �xφ implying further � (�xf1 ∧ .. ∧ �xfn) ⇒ �xφ. Hence,
�xφ ∈ [Γ ].

1. If �x� ∈ [Γ ], from �xφ ∈ [Γ ] we obtain �xφ ∈ [Γ ] - contradiction.
2. �xφ �∈ [Γ ] is again contradictory.

A basic theorem that holds for the axiom system is the soundness property.

Theorem 1 (Soundness). The axiomatic system of L is sound, i.e., for any
φ ∈ L,

� φ implies |= φ.

The proof is a routine structural induction. It is sufficient to prove that each
axiom is sound and that each rule preserves the soundness.

The more interesting result is the completeness of the axiom system. More-
over, we will show that for each consistent formula a finite model can be con-
structed.

Recall that there are two notions of completeness: strong completeness and
weak completeness. Strong completeness says that

Γ |= φ ⇐⇒ Γ � φ.
An important easy consequence of strong completeness is the so-called compact-
ness property. A logic is said to be compact if every inconsistent set of formulas
has a finite inconsistent subset. Our logic is not compact. For example, the set
of formulas
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{p, [+]p, [+][+]p, [+]
3
p, . . . ,¬[+]

∗
p}

is not consistent but any finite subset is consistent. Therefore we cannot hope
to prove strong completeness. Instead we prove weak completeness

|= φ ⇐⇒ � φ.
Many of the basic completeness proofs in the literature are strong complete-
ness proofs and are much easier than weak completeness proofs. The proof
that we present shares many of the features of the weak completeness proof
for PDL.

Before proceeding with these proofs we establish some notation that will be
useful for future constructions.

We extend, canonically, all the logical operators from formulas to sets of
formulas. Thus for arbitrary Φ, Ψ ⊆ L, Φ ∧ Ψ = {φ ∧ ψ | φ ∈ Φ, ψ ∈ Ψ},
〈+〉aΦ = {〈+〉aφ | φ ∈ Φ}, and so on for all the modal operators.

If Φ ⊆ L is finite, we use Φ to also denote
∧
φ∈Φ φ; it should be clear from the

context when Φ denotes a set of formulas and when it denotes the conjunction
of its elements.

A key step in the proof is the construction of models by using maximally
consistent sets as states. However, because we are trying to prove a weak com-
pleteness theorem we have to ensure that we are constructing finite sets of for-
mulas. The liberal notion of maximal consistency used in strong completeness
proofs is not available to us. If we wish to construct a model of a formula φ,
we need to define a special family of formulas associated with φ from which we
will construct maximal consistent subsets. Furthermore we need to ensure that
the collection of formulas we construct is finite. We adapt a construction due to
Fischer and Ladner [14] developed in the context of PDL.

For an arbitrary φ ∈ L, let ∼ φ = ψ whenever φ = ¬ψ and ∼ φ = ¬φ
otherwise.

For an arbitrary φ ∈ L, let kiφ = φ whenever φ = Kiψ or φ = ¬Kiψ and
kiφ = Kiφ otherwise.

Definition 14. The (Fischer-Ladner) closure of φ, written FL(φ), is defined as
a set of formulas such that:

– φ, 〈−〉ap, 〈−〉a� ∈ FL(φ),
– if ψ ∈ FL(φ), then ∼ ψ ∈ FL(φ), kiψ and any subformula of ψ is in FL(φ),
– if 〈−〉aψ ∈ FL(φ) or 〈+〉aψ ∈ FL(φ), then 〈−〉ψ, 〈+〉ψ ∈ FL(φ),
– if �∗ψ ∈ FL(φ), then ��∗ψ ∈ FL(φ).

The following lemma is immediate but important to state because we have to
ensure that we always have finite sets of formulas when we construct models out
of sets of formulas.

Lemma 3. For any φ ∈ L, FL(φ) is finite.

In what follows we fix a consistent formula θ ∈ L and we construct a finite model
for θ. This means that we construct an epistemic frame Eθ = (Fθ, (≈i)i∈I), a
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valuation ρ : supp(Fθ)⇒ 2P and we will identify a state s ∈ supp(Fθ) such that
s |= θ.

Let Ωθ be the set of FL(θ)-maximally consistent sets. Because FL(θ) is finite,
Ωθ and any Γ ∈ Ωθ are finite sets. In the construction of the model we will use
Ωθ as the support set for Fθ. The transitions on Ωθ are defined as follows. For
each a ∈ A, let

a−→⊆ Ωθ ×Ωθ be defined by

Γ
a−→ Γ ′ iff for any ψ ∈ L, [+]aψ ∈ [Γ ] implies ψ ∈ [Γ ′].

Now we prove a few properties of these transitions that will be important for
the rest of the proof.

Lemma 4. For arbitrary Γ, Γ ′ ∈ Ωθ the following are equivalent

1. for any φ ∈ L, [+]aφ ∈ [Γ ] implies φ ∈ [Γ ′],
2. for any φ ∈ L, [−]aφ ∈ [Γ ′] implies φ ∈ [Γ ].

Proof. (1) implies (2): Suppose that [−]aφ ∈ [Γ ′]. Then, � Γ ′ ⇒ [−]aφ and using
axiom (AB1), � 〈+〉aΓ ′ ⇒ φ. If we prove that 〈+〉aΓ ′ ∈ [Γ ], then φ ∈ [Γ ] and
the proof is done. Observe that 〈+〉a� ∈ [Γ ] because otherwise ¬〈+〉a� ∈ [Γ ]
implying [+]a⊥ ∈ [Γ ] and from the hypothesis we obtain ⊥ ∈ [Γ ′] - impossi-
ble. Hence, 〈+〉a� ∈ [Γ ] and if 〈+〉aΓ ′ �∈ [Γ ], from Lemma 2 instantiated to
�x = [+]a, we obtain that {ψ | [+]aψ ∈ [Γ ]} ∪ {¬Γ ′} is consistent. But this is
impossible because, from the hypothesis, {ψ | [+]aψ ∈ [Γ ]} ⊆ [Γ ′].

(2) implies (1) Suppose that [+]aφ ∈ [Γ ]. Then, � Γ ⇒ [+]aφ implying
� 〈−〉aΓ ⇒ 〈−〉a[+]aφ. Now (AB2) guarantees that � 〈−〉aΓ ⇒ φ. In any
normal modal logic we have that � (�ψ ∧ ��) ⇒ �ψ. We use this with the
previous formula and we obtain � ([−]aΓ ∧ 〈−〉a�)⇒ φ.

Note that 〈−〉a� ∈ Γ ′ because otherwise [−]a⊥ ∈ Γ ′ and, from the hypothesis
we obtain that ⊥ ∈ [Γ ] - impossible. Now, if we prove that [−]aΓ ∈ [Γ ′], then
φ ∈ [Γ ′] and the proof is done. Now note that [−]aΓ �∈ [Γ ′] implies, using Lemma
2 instantiated with �x = [−]a, that {ψ | [−]aψ ∈ [Γ ′]}∪{¬Γ} is consistent. But
this is impossible because, from the hypothesis, {ψ | [−]aψ ∈ [Γ ′]} ⊆ [Γ ].

This lemma tells us that we can define the transitions either using [+] or [−].

Lemma 5. For arbitrary Γ ∈ Ωθ and [+]aφ ∈ FL(θ),

1. [+]aφ ∈ Γ iff for any Γ ′ ∈ Ωθ, Γ a−→ Γ ′ ⇒ φ ∈ Γ ′;
2. 〈+〉aφ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ

a−→ Γ ′, φ ∈ Γ ′;
3. [−]aφ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ ′ a−→ Γ, φ ∈ Γ ′;
4. 〈−〉aφ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ ′ a−→ Γ, φ ∈ Γ ′.

Proof. 1. (⇒:) From the definition of
a−→.

(⇐:) Let φ be such that φ ∈ [Γ ′] for each Γ ′ ∈ Ωθ with Γ
a−→ Γ ′. We need to

prove that [+]aφ ∈ [Γ ]. Note that a formula that is in [Γ ] and also in FL(θ) is
automatically in Γ .

Let Δ = {Γ ′ ∈ Ωθ | Γ a−→ Γ ′} and let δ =
∨

Γ ′∈Δ
Γ ′. Obviously, � δ ⇒ φ

implying � [+]aδ ⇒ [+]aφ. Now, if we prove that [+]aδ ∈ [Γ ], the proof is done.
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Suppose that [+]aδ �∈ [Γ ]. Lemma 2 implies that Λ∪{¬δ} is consistent, where
Λ = {ψ | [+]aψ ∈ [Γ ]}. But [+]aψ ∈ [Γ ] implies ψ ∈ Γ ′ for each Γ ′ ∈ Δ and this
proves that Λ ∪ {¬δ} cannot be consistent.

(2) is the De Morgan dual of (1).
(3) and (4) are proved in the same way as (1) and (2).

We draw the reader’s attention to a minor subtlety in the proof because it
recurs in several later proofs. We showed that a formula in FL(θ), say φ, is in
the deductive closure of a maximally consistent subset, say Γ , of FL(θ), in other
words we showed that φ ∈ [Γ ]. From the fact that φ is itself in FL(θ) we were
able to deduce that φ is in Γ itself precisely because Γ is maximal consistent as
a subset of FL(θ).

We now need to establish the analogous results for the starred modalities. In

what follows, let −→=
⋃

a∈A

a−→ and −→∗ be its reflexive-transitive closure. This

means that Γ −→∗ Γ ′ if there exists a sequence Γ1, . . . , Γk ∈ Ωθ such that

Γ = Γ1 −→ Γ2 −→ . . . −→ Γk−1 −→ Γk = Γ ′;

Because −→∗ is reflexive, k can be 1.

Lemma 6. For arbitrary Γ, Γ ′ ∈ Ωθ the following are equivalent

1. for any φ ∈ L, [+]∗φ ∈ [Γ ] implies φ ∈ [Γ ′],
2. for any φ ∈ L, [−]∗φ ∈ [Γ ′] implies φ ∈ [Γ ],
3. Γ −→∗ Γ ′.

Proof. (1) =⇒ (3): Let Δ = {Λ ∈ Ωθ | Γ −→∗ Λ} and δ =
∨

Λ∈Δ
Λ.

By construction, if [+]φ ∈ [Λ] for some Λ ∈ Δ, there exists Λ′ ∈ Δ such that
φ ∈ [Λ′]. This entails � δ ⇒ [+]δ which guarantees that � [+]∗(δ ⇒ [+]δ).
Using axiom (C4), we obtain � δ ⇒ [+]∗δ. But Γ ∈ δ (because −→∗ is reflexive),
consequently � Γ ⇒ δ. From here and the previous we derive � Γ ⇒ [+]∗δ
implying [+]∗δ ∈ [Γ ]. Now using 1., δ ∈ [Γ ′] implying Γ ′ ∈ Δ.

(3) ⇒ (1): Suppose that Γ = Γ1 −→ . . . −→ Γk = Γ ′ and [+]∗φ ∈ [Γ ]. Axiom
(C3) guarantees that φ ∈ [Γ1] and [+][+]∗φ ∈ [Γ1]. Hence [+]∗φ ∈ [Γ2] from the
definition of −→. The same argument can be repeated for the k cases eventually
giving [+]∗φ ∈ [Γk] = [Γ ′] which implies, using axiom (C3), φ ∈ [Γ ′].

(2) ⇔ (3): It is proved in the same way using the axioms (D1) and (D2) in
instances of Lemma 1 and (D3), (D4) respectively.

Lemma 7. For arbitrary Γ ∈ Ωθ and [+]∗φ ∈ FL(θ),

1. [+]∗φ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′, φ ∈ Γ ′;
2. 〈+〉∗φ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′, φ ∈ Γ ′;
3. [−]∗φ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ, φ ∈ Γ ′;
4. 〈−〉∗φ ∈ Γ iff there exists Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ, φ ∈ Γ ′.
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Proof. (1) ⇒: From Lemma 6.
(⇐:) Let φ be such that φ ∈ [Γ ′] for each Γ ′ ∈ Ωθ with Γ −→∗ Γ ′. We need to
prove that [+]∗φ ∈ [Γ ].

Let Δ = {Γ ′ ∈ Ωθ | Γ −→∗ Γ ′} and let δ =
∨

Γ ′∈Δ
Γ ′. Obviously, � δ ⇒ φ

implying � [+]∗δ ⇒ [+]∗φ. Now, if we prove that [+]∗δ ∈ [Γ ], the proof is done.
Suppose that [+]∗δ �∈ [Γ ]. Lemma 2 implies that Λ∪{¬δ} is consistent, where

Λ = {ψ | [+]∗ψ ∈ [Γ ]}. But [+]∗ψ ∈ [Γ ] implies ψ ∈ Γ ′ for each Γ ′ ∈ Δ and this
proves that Λ ∪ {¬δ} cannot be consistent.

(2) is equivalent to (1).
(3) and (4) are proved in the same way.

Now we can proceed with our construction of the model for θ. We start by
showing that (Ωθ,

a−→)a∈A is a forest. For this we need to verify that the past is
unique and that the graphs have no loops. The precise statement is given in the
following theorem.

Theorem 2. If f ∈ L is consistent, then Fθ = (Ωθ,
a−→)a∈A is a forest over A.

The proof of this theorem is broken down into two lemmas.

Lemma 8. For arbitrary Γ, Γ1, Γ2 ∈ Ωθ, if Γ1
a−→ Γ and Γ2

b−→ Γ , then a = b
and Γ1 = Γ2.

Proof. To prove that a = b it is sufficient to observe that 〈−〉a� ∧ 〈−〉b� is
inconsistent, result that is a direct consequence of axiom (B3).

Now, from Γ1
a−→ Γ and Γ2

a−→ Γ we prove that Γ1 = Γ2. Suppose that there
exists φ ∈ FL(θ) s.t. φ ∈ Γ1 and ¬φ ∈ Γ2. Then, from axiom (AB1) we obtain

that [+]a〈−〉aφ ∈ [Γ1] and [+]a〈−〉a¬φ ∈ [Γ2]. Now Γ1
a−→ Γ guarantees that

〈−〉aφ ∈ [Γ ] while Γ2
a−→ Γ guarantees that 〈−〉a¬φ ∈ [Γ ]. Further, using axiom

(B4) we obtain that [−]φ, [−]¬φ ∈ [Γ ] implying [−]⊥ ∈ [Γ ]. On the other hand,
〈−〉aφ ∈ [Γ ] implies 〈−〉a� ∈ [Γ ] which is equivalent to ¬[−]⊥ ∈ [Γ ] - contradicts
the consistency of [Γ ].

Now we prove that in the graph (Ωθ,
a−→)a∈A there are no backwards infinite

sequences; this will conclude the proof that (Ωθ,
a−→)a∈A is a forest overA.

Lemma 9. There exists no infinite sequence Γ1, . . . , Γk, .. ∈ Ωθ such that

..Γk −→ Γk−1 −→ .. −→ Γ1 = Γ.

Proof. Suppose that there exists such a sequence. Axiom (BD1) guarantees that
〈−〉∗[−]⊥ ∈ [Γ ] and using Lemma 7 we obtain that there exists Γ ′ ∈ Ωθ such that
Γ ′ −→∗ Γ and [−]⊥ ∈ Γ ′. Lemma 8 guarantees that Γ ′ is one of the elements of
our sequence, hence ¬〈−〉� ∈ Γ ′. But this implies that there exists no Γ ′′ ∈ Ωθ
such that Γ ′′ −→∗ Γ ′, this contradiction establishes the result.

To complete the construction of the model for θ we need to define the indis-
tinguishability relations on Ωθ that will eventually organize our forest as an
epistemic frame.
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For each i ∈ I, let ≈i⊆ Ωθ ×Ωθ be defined as follows:

Γ ≈i Γ ′ iff for any φ ∈ L,Kiφ ∈ [Γ ] iff Kiφ ∈ [Γ ′].

By construction, ≈i is an equivalence relation. Now, to finalize our construction,
we must prove that for each i ∈ I, ≈i preserves the branching structure of Fθ
and finally that we have an epistemic frame.

Theorem 3. Eθ = (Fθ, (≈i)i∈I), where Fθ = (Ωθ,
a−→)a∈A and ≈i are defined

as before, is an epistemic frame.

The proof is broken into a number of lemmas. The first lemma that we need is
the following.

Lemma 10. For arbitrary Γ, Γ ′ ∈ Ωθ, if for any φ, Kiφ ∈ [Γ ] implies φ ∈ [Γ ′],
then for any φ, Kiφ ∈ [Γ ] implies Kiφ ∈ [Γ ′].

Proof. Suppose that for any φ, Kiφ ∈ [Γ ] implies φ ∈ [Γ ′] and let Kiψ ∈ [Γ ].
From our hypothesis we obtain that if Kiψ �∈ [Γ ′], then KiKiψ �∈ [Γ ]. From the
axioms (E3) and (E4), � Kiψ ↔ KiKiψ. Hence, Kiψ �∈ [Γ ], this contradiction
completes the proof.

Now we can prove that for each i ∈ I, ≈i preserves the backwards branching
structure of Fθ.
Theorem 4. For arbitrary Γ, Γ ′ ∈ Ωθ, if Γ ≈i Γ ′ and there exists Γ0 ∈ Ωθ
such that Γ0

a−→ Γ , then there exists Γ ′
0 ∈ Ωθ such that Γ ′

0
a−→ Γ ′ and Γ ′

0 ≈i Γ0.

Proof. Because � �, using (E2) we obtain � Ki�. Because Ki� ∈ [Γ0], we
obtain that 〈−〉aKi� ∈ [Γ ] and axiom (BE1) implies Ki〈−〉a� ∈ [Γ ]. Now, from
Γ ≈i Γ ′, 〈−〉a� ∈ [Γ ′]. From Lemma 5 we obtain that there exists Γ ′

0 ∈ Ωθ such
that Γ ′

0 −→ Γ ′.
We prove now that Γ ′

0 ≈ Γ0. Suppose that Kiφ ∈ [Γ0]. Then, 〈−〉aKiφ ∈ [Γ ]
and axiom (BE1) implies Ki〈−〉aφ ∈ [Γ ]. Now from Γ ≈i Γ ′, 〈−〉aφ ∈ [Γ ′]. Now
axiom (B4) implies [−]φ ∈ [Γ ′] and because Γ ′

0 −→ Γ ′, Lemma 5 implies φ ∈ [Γ ′
0].

Hence, Kiφ ∈ [Γ0] implies φ ∈ [Γ ′
0] and Lemma 10 concludes that Kiφ ∈ [Γ0]

implies Kiφ ∈ [Γ ′
0]. Similarly can be proved that Kiφ ∈ [Γ ′

0] implies Kiφ ∈ [Γ0].

Lemma 10 also establishes the next result that is needed for the proof of the
theorem.

Lemma 11. For arbitrary Γ ∈ Ωθ and Kiφ ∈ FL(θ),

Kiφ ∈ Γ iff for any Γ ′ ∈ Ωθ such that Γ ≈i Γ ′, φ ∈ Γ ′

Proof. (⇒) This follows directly from Lemma 10.
(⇐) Let φ be such that Kiφ ∈ FL(θ) and φ ∈ Γ ′ for each Γ ′ ∈ Ωθ with

Γ ≈i Γ ′. We need to prove that Kiφ ∈ Γ .

Let Δ = {Γ ′ ∈ Ωθ | Γ ≈i Γ ′}, let Λ = {f1, . . . , fn} =
⋂

Γ ′∈Δ
Γ ′ and let

F = f1 ∧ . . . ∧ fn. Then � F ⇒ φ implying � KiF ⇒ Kiφ. Consequently, if we
prove that KiF ∈ [Γ ], the proof is done.
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Suppose that KiF �∈ [Γ ]. Then, there exists ft ∈ Λ such that Kift �∈ Γ .
Then, ¬Kift ∈ Γ and axiom (E5) implies Ki¬Kift ∈ [Γ ]. The definition of
≈i guarantees that for any Γ ′ ∈ Δ, Ki¬Kift ∈ [Γ ′] and axiom (E3) entails
that for any Γ ′ ∈ Δ, ¬Kift ∈ Γ ′. Hence, � F ⇒ ¬Kift which is equivalent
to � Kift ⇒ ¬F . But � F ⇒ ft implying � KiF ⇒ Kift. Consequently,
� KiF ⇒ ¬F . But from axiom (E3), � KiF ⇒ F , implying � ¬KiF . But Λ is
consistent and KiF �∈ [Λ], then a similar argument with the one used in Lemma
2 (notice that Ki is a normal modal operator of type �) shows that Λ ∪ {¬F}
is consistent, which is impossible.

This completes the proof of the theorem.
We are now ready to complete the construction of the model of θ. Eθ is the

epistemic frame of the model and the we define a valuation ρθ : Ωθ −→ 2P by
ρθ(Γ ) = {p ∈ P | p ∈ Γ}. With this definition we prove the Truth Lemma.

Lemma 12 (Truth Lemma). If θ ∈ L is consistent, Eθ and ρθ are defined as
before, then for any φ ∈ FL(θ) and Γ ∈ Ωθ,

φ ∈ Γ iff Γ |= φ.

Proof. Induction on φ.
[The case φ = p ∈ P:] from definition of Propθ .
[The case φ = ¬ψ:] (=⇒) Suppose that Γ �|= ¬ψ. Then Γ |= ψ and from the

inductive hypothesis, ψ ∈ Γ , hence φ �∈ Γ .
(⇐=) Suppose that Γ |= ¬ψ and ¬ψ �∈ Γ . Then, ψ ∈ Γ and the inductive

hypothesis guarantees that Γ |= ψ - contradiction.
[The case φ = φ1 ∧φ2:] φ1 ∧φ2 ∈ Γ iff φ1, φ2 ∈ Γ which is equivalent, using

the inductive hypothesis, to [Γ |= φ1 and Γ |= φ2], equivalent to Γ |= φ1 ∧ φ2.
[The case φ = 〈+〉aψ:] (=⇒) If 〈+〉aψ ∈ Γ , Lemma 5 implies that there

exists Γ ′ ∈ Ωθ such that Γ
a−→ Γ ′ and ψ ∈ Γ ′. From the inductive hypothesis,

Γ ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= 〈+〉aψ implies that there exists Γ ′ ∈ Ωθ such that Γ
a−→ Γ ′ and

Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 5 implies 〈+〉aψ ∈ Γ .
[The case φ = 〈−〉aψ:] (=⇒) If 〈−〉aψ ∈ Γ , Lemma 5 implies that there

exists Γ ′ ∈ Ωθ such that Γ ′ a−→ Γ and ψ ∈ Γ ′. From the inductive hypothesis,
Γ ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= 〈−〉aψ implies that there exists Γ ′ ∈ Ωθ such that Γ ′ a−→ Γ and
Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 5 implies 〈−〉aψ ∈ Γ .

[The case φ = 〈+〉∗ψ:] (=⇒) If 〈+〉∗ψ ∈ Γ , Lemma 7 implies that there
exists Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′ and ψ ∈ Γ ′. From the inductive hypothesis,
Γ ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= 〈+〉∗ψ implies that there exists Γ ′ ∈ Ωθ such that Γ −→∗ Γ ′ and
Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 7 implies 〈+〉∗ψ ∈ Γ .

[The case φ = 〈−〉∗ψ:] (=⇒) If 〈−〉∗ψ ∈ Γ , Lemma 7 implies that there
exists Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ and ψ ∈ Γ ′. From the inductive hypothesis,
Γ ′ |= ψ, implying Γ |= φ.
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(⇐=) Γ |= 〈−〉∗ψ implies that there exists Γ ′ ∈ Ωθ such that Γ ′ −→∗ Γ and
Γ ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 7 implies 〈−〉∗ψ ∈ Γ .

[The case φ = Kiψ:] (=⇒) If Kiψ ∈ Γ , Lemma 11 implies that for any
Γ ′ ∈ Ωθ such that Γ ≈i Γ ′, ψ ∈ Γ ′. From the inductive hypothesis, Γ ′ |= ψ,
implying Γ |= φ.

(⇐=) Γ |= Kiψ implies that for any Γ ′ ∈ Ωθ such that Γ ≈i Γ ′, Γ ′ |= ψ.
From the inductive hypothesis, ψ ∈ Γ ′ and Lemma 11 implies Kiψ ∈ Γ .

A direct consequence of Truth Lemma is the finite model property.

Theorem 5 (Finite Model Property). For any consistent formula φ ∈ L
there exists a finite model. Moreover, the size of the model is bound by the struc-
ture of φ.

The finite model property in this context has two important consequences: the
weak completeness of the axiomatic system and the decidability of the satisfia-
bility problem.

Theorem 6 (Weak Completeness). The axiomatic system of L is complete,
i.e., for any φ ∈ L,

|= φ implies � φ.
Proof. The proof is based on the fact that any consistent formula has a model.
We wish to show that |= φ implies � φ. Now we have shown that if φ is consistent
it has a model. Clearly then, if ¬φ is consistent there is a model of ¬φ. The last
statement is equivalent to saying that if �� φ then ¬φ is satisfiable. If ¬φ is
satisfiable it follows that not every model models φ, i.e. �|= φ. Thus we have �� φ
implies �|= φ, or taking the contrapositive, |= φ implies � φ.

Observe that in the previous construction, the size of Ωθ depends on the number
and type of operators that θ contains. In what follows we refer to the cardinality
|Ωθ| of Ωθ as the size of θ.

The satisfiability problem is the problem of deciding, given an arbitrary for-
mula φ ∈ L, if φ has at least one model. The finite model property entails that
the satisfiability problem for our logic is decidable.

Theorem 7 (Decidability). The satisfiability problem for L is decidable.

Proof. We have proved that θ has at least one model iff it is consistent. And if θ
is consistent we have proved that it has a model of size |Ωθ| ∈ N. But the class
of models of size k ∈ N is finite. Consequently, we can decide in a finite number
of steps if θ does or does not have a model by checking all the models of the
appropriate sizes.

6 Conclusions and Related Work

There seems to be a mysterious divide between concurrency theory, which is
primarily a European enterprise, and distributed systems theory which is in-
tensively explored in the United States, Israel and a few other places. This is
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unfortunate because the two have much to learn from each other. Concurrency
theorists can learn sophisticated new tools like algebraic topology and deeper
problems whereas the distributed systems community could learn about, for ex-
ample, compositional reasoning. Epistemic logic is one of the areas where the
distributed systems community got an early start [5] in the mid 1980s whereas
the concurrency theory community is only just starting to use these ideas. This
schizophrenia is manifested even in the work of individuals! For example, the
third author of the present paper worked on common knowledge in asynchronous
distributed systems in the late 1980s [15,16] and later on concurrency theory [17]
without making the connection. The present work is intended to make epistemic
logic more readily accessible to the concurrency theory community by provid-
ing a combination of epistemic logic with the Hennessy-Milner logic that the
concurrency community is accustomed to using.

The ground breaking paper of Halpern and Moses [2,12] showed the impor-
tance of common knowledge as a way of formalizing agreement protocols in
distributed systems. Very quickly variants of common knowledge were devel-
oped [18,15] and many new applications were explored [19]. Extensions to prob-
ability [20] and zero-knowledge protocols [21] quickly followed. The textbook of
Fagin et al. [5] made these ideas widely accessible and stimulated even more
interest and activity. There are numerous recent papers by Halpern and his col-
laborators, Parikh and his collaborators and students, van Benthem and the
Amsterdam school and by several other authors as well. Applications of epis-
temic concepts range across game theory, economics, spatial reasoning and even
social systems.

In the concurrency theory community there is very little work on this topic.
Two striking examples are a recent paper by Chadha, Delaune and Kremer [3]
and one by Dechesne, Mousavi and Orzan [22]. The former paper defines an
epistemic logic for a particular process calculus, a variant of the π-calculus and
uses it to reason about epistemic situations. The latter paper explores the con-
nection between operational semantics and epistemic logic and is closer in spirit
to our work which is couched in terms of labelled transition systems. Neither of
these paper really integrate Hennessy-Milner logic and epistemic logic. In [23,24],
Mardare proposes a complete logic for CCS which combines Hennessy-Milner,
epistemic and spatial operators. A recent paper by Knight et al. [25] uses a rudi-
mentary epistemic logic to capture epistemic strategies for games on concurrent
processes. A recent paper by Pacuit and Simon [26] develops a PDL-style logic
for reasoning about protocols. They also prove a completeness theorem for their
logic; it is perhaps the closest in spirit to our work.
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Abstract. We consider an agent choosing between two acts A, B, whose
outcomes are uncertain and depend on factors which the agent does
not fully know. But for each pair of possible outcomes the agent does
know how she would choose. Does the agent then have a way of choosing
between the acts which will work at least some of the time?

Dedicated to Dexter Kozen on the Occasion of His Sixtieth Birthday

1 Introduction

Sometimes, we have to choose between two or more actions, but lacking infor-
mation, we are not sure what outcome will come about as a result of our choice.
How should we choose? How might we choose?

To see this a bit formally, suppose an agent is in a situation of uncertainty
where she has to choose between two moves L and R but does not know for sure
what the outcome will be with either choice. Assume moreover that the agent
has no way of assigning probabilities to the various outcomes. In the absence of
such information, how might the agent choose?

One option is the maxmin route. An agent can choose L if the worst possible
outcome with L is better than the worst outcome with R. We will describe such
an agent as conservative. However, an ambitious agent may choose R if the best
outcome under R is better than the best outcome with L. We will describe such
an agent as aggressive.1

It is clear then that in the same situation, an aggressive agent with the same
options and the same preferences as a conservative one may still make a different
choice.

Some people never buy lottery tickets on the ground that the worst outcome
under buying, namely losing one’s money, is worse than the certain outcome (no
gain, no loss) under not buying. But those who do buy such tickets are clearly
judging by the best outcome.

1 If we did have cardinal utilities and probabilities we would have used the expressions
risk averse and risk loving.
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Such points of view are often taken into account by stockbrokers advising
people on investments. A younger investor may prefer a stock with a high po-
tential growth but significant risk. An investor close to retirement age may, on
the contrary prefer a stock with less growth but also less risk. A middle aged
investor may accept a moderate amount of risk.

In most of this paper we assume that utilities are ordinal. In other words,
between any two choices a and b, the agent may be neutral, prefer a or prefer
b. Numbers u(a), u(b) can be assigned to a and b so that u(a) < u(b) iff b is
preferred to a. However, ordinal utilities are preserved by all order preserving
transformations. If c is preferred to b and b to a (which we may write c > b > a)
then there is no difference between utility assignments to a, b, c of 1, 2, 10 or
1, 9, 10. It is also generally assumed that comparing utilities between different
players makes no sense.

If we had access to cardinal utilities and a subjective probability were avail-
able, we could have used expected value as a basis for comparison of choices.
However, these tools are not always available. Suppose for instance, that a voter
has clear preferences among three candidates A, B and C. She prefers A to B
to C. She still might not have a clear intuition in response to the question, “Do
you prefer B or a 50-50 chance of A versus C?” 2

The general issue is that a player in uncertainty is choosing between two sets
(or sequences) of payoffs. The payoffs with L are, say, a1, a2, ..., ak and the payoffs
with R are b1, b2, ..., bm such that a1 > a2 > ... > ak and b1 > b2 > ... > bm.
A conservative player chooses L over R if ak is preferred to bm. An aggressive
player chooses R over L if b1 is better than a1. In addition to conservative and
aggressive players, we can also consider moderate players who try to find the
middle way, staying away from the maximum or the minimum.

More generally, let a player use a selection function f to represent a sequence
of outcomes by a single element. f takes a finite ordered set as input and selects
a representative element from that set. A conservative player uses the minimum,
an aggressive player uses the maximum, and a moderate player uses (say) the
median. (In case the number of elements is even we can use the higher of the
two medians.)

If the selection function f is used then we let X � Y (Y � X) iff f(X) ≤ f(Y ),
where X, Y are finite sets of outcomes. It is easily seen that the relation � defined
this way will be transitive, although it is not anti-symmetric.

The function f should satisfy some rationality conditions.

1.1 Suitable Selection Functions

Definition 1. A function f is suitable if it has the properties below.

2 Such choices between bets have been used by both Ramsey and de Finetti [9,4], but
they do not always make sense to the person being asked. And without clear and
consistent answers to such questions, we cannot have access to subjective probabili-
ties (or to cardinal utilities). See also Savage [11] who imposes rationality conditions
on choices between bets in order to derive subjective probabilities and utilities.
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1. If ordered sets A and B are isomorphic by an order preserving map g, then
g(f(A)) = f(B).

2. If set A is augmented to a set B by adding an element x which exceeds all
elements of A, then f(B) ≥ f(A).

3. If set A is augmented to a set B by adding an element x which is less than
all elements of A, then f(B) ≤ f(A).

4. If sets A and B overlap but all elements in B − A exceed those in A ∩ B
which exceeds all elements in A − B then f(A) ≤ f(B).

Note that conditions 2 and 3 together imply (for finite sets) condition 4 which
implies both 2 and 3.

Let us define s(n) = f({1, ..., n}).
Because of the order isomorphism property 1 above, the function s com-

pletely characterizes f . For any finite ordered set is order isomorphic to some set
{1,...,n}. By abuse of language we will say that s is suitable iff the corresponding
f is.

Proposition 1. s is suitable iff s(n) ≤ s(n + 1) ≤ s(n) + 1 for all n.

Proof
Necessity: Note that f({1, ..., n}) ≤ f({1, ..., n + 1}) since the second set is
obtained from the first by adding a larger element. This yields s(n) ≤ s(n + 1).

Note again that f({1, ..., n+1}) ≤ f({2, ..., n+1}) since the first set is obtained
from the second by adding a smaller element. But the second value is just s(n)+1.
This follows from the isomorphism condition as the set {2, ..., n+1} is isomorphic
to the set {1, ..., n} via the function g(n) = n + 1. So we get s(n + 1) ≤ s(n)+ 1.

Before proving sufficiency we remark that this yields s(n + m) ≤ s(n) + m.
This is easily shown using induction on m.

Sufficiency: Suppose that s satisfies s(n) ≤ s(n+m) ≤ s(n)+m for all m, n. It is
easy to see that the first three conditions above will hold for the
corresponding f .

To see the last, suppose that set A is {1, ..., n} and set B is {m+1, ..., n, ..., m+
r} so that the elements 1, ..., m are in A and below B, and elements n+1, ..., m+r
are elements of B above A. Since we assume overlap as in property 4, we may
assume that m + r is at least n.

Now f(B) = s(r) + m since B consists of r elements in order but shifted
rightward from 1, ..., r by an amount of m. Since n ≤ r + m, s(n) ≤ s(r + m) ≤
s(r)+m. Now f(A) = s(n), and f(B) = s(r)+m. So indeed f(A) ≤ f(B). �

This shows that there are uncountably many suitable choice functions since the
transition from s(n) to s(n + 1) can be zero or one, infinitely many times. Since
there are not that many human beings, the conservative humans with s(n) = 1,
aggressive humans with s(n) = n and moderate humans with s(n) approximately
equal to n/2 are the typical cases to appear in practice.

Lemma 1. The minimum, the median and the maximum are all suitable func-
tions (SCFs) in the sense above (and the corresponding notions of f -rationality
are equivalent to being conservative, moderate, and aggressive respectively).
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Proof of Lemma 1: It is obvious that the median, the maximum and the
minimum are preserved by isomorphism. We check the fourth condition in Def-
inition 1 just for the median. Suppose that X and Y overlap so that X is
a1 > a2 > ... > ak > b1 > ... > bm and Y is b1 > b2 > ... > bm > c1 > ... > cp.
X − Y is above Y − X . Clearly if the median of X is an ai or the median of
Y is a ci then we are done. If both medians are bi and bj respectively. Then
i + k = m − i + 1 and j = p + m − j + 1. Thus we get 2i = m + 1 − k and
2j = p + m + 1. Thus i < j and bi > bj . �

Note that we could also conclude this from the last proposition since the median
m(n) on {1, ..., n} obviously satisfies the condition m(n) ≤ m(n+1) ≤ m(n)+1
for all n. Ditto for the quartiles etc.

Note that an SCF need not satisfy Nash’s IIA condition [7] that if a = f(X),
Y ⊆ X , and a ∈ Y then a = f(Y ). It so happens that both the maximum and
the minimum do satisfy this condition, but not the median.

Of course there is no particular reason why IIA should be obeyed in such
a case. The role of f(X) is to play the role of an element which in some sense
represents X rather than that of a most preferred element of X . Thus the median
is probably the closest to the expected value which we tend to use when we do
have cardinal utilities and a subjective probability.

Definition 2. Given an SCF f , an f -rational agent is an agent who, when
uncertain between sets X and Y of alternatives, always picks X if f(X) > f(Y ).

Sometimes we can speak of one strategy being dominated by another. Suppose
that there is a set of possible worlds {s1, ..., sn} and for each world si actions L
and R yield payoffs pi and qi respectively. Then we say that L is dominated by
R if for each i, pi ≤ qi and for at least one i, pi < qi.3 In such a situation, the
number of possible outcomes with either L or R will be the same, namely n.

It is easily seen that all three kinds of players, conservative, moderate and
aggressive will never pick a strictly dominated strategy.

3 The notion of strictly dominated strategy that we intend is subjective. Thus we
actually mean a strategy which is dominated by another pure strategy that the
agent considers possible at the time of play. Consider the following scenario: Suppose
Ann is giving a dinner party and she has to make a decision between serving two
dinners d and d′. Assume that three guests have been invited, and guest 1 and guest
2 prefer d to d′ whereas guest 3 not only prefers d′ to d but also, he is allergic
to one of the ingredients in d. If Ann is a conservative agent, she will serve d′ to
avoid the worst case scenario. Now let’s say guest 3 is not going to the dinner party
but Ann is unaware of this. In this case she will still serve d′ even though it is a
strictly dominated strategy if only guests 1 and 2 will be there. But since guest 3 was
expected to show up in the original scenario and Ann does not know that he is not
coming, we do not consider serving d′ as strictly dominated in this example. Note
that the notion of a dominated strategy makes sense only when two choices lead
to different results but over the same set of possible worlds. When one is choosing
between L and R in a game tree, the two actions lead to different sets of nodes and
the notion of domination does not have an obvious intuitive meaning.



248 R. Parikh, Ç. Taşdemir, and A. Witzel

2 Examples

We now give some applications of the technical work so far.

2.1 Example 1

The Asian Disease – Tversky and Kahneman 1981 [13]
Imagine that the United States is preparing for the outbreak of an unusual Asian
disease, which is expected to kill 600 people. Two alternative programs to combat
the disease have been proposed. Assume that the exact scientific estimates of
the consequences of the programs are as follows:

– If Program A is adopted, 200 people will be saved.
– If Program B is adopted, there is a one-third probability that 600 people

will be saved and a two-thirds probability that no people will be saved.

Which of the two programs would you favor?
In this version of the problem, a substantial majority (72%) of 152 respondents
favor program A, indicating risk aversion.

Other 155 respondents, selected at random, receive a question in which the
same cover story is followed by a different description of the options:

– If Program A′ is adopted, 400 people will die.
– If Program B′ is adopted, there is a one-third probability that nobody will

die and a two-thirds probability that 600 people will die.

Again, the same question is asked:
Which of the two programs would you favor?
A clear majority (78%) now favor B′.

One way to understand this phenomenon is that the way the problem is stated
causes a change from min-rationality to max-rationality. Programs A and A′

result in 400 deaths. Programs B and B′ amount to no deaths if we are lucky
and to 600 deaths if we are unlucky. A cautious person would prefer program A
and an aggressive (optimistic) person would prefer B. The way the question is
posed causes a shift from caution to optimism. But both forms of rationality are
‘rational’.

Rationality can enter at two different levels. A purely decision theoretic level,
where a single agent is trying to make the ‘best’ choice; or a game theoretic level
where two or more agents are involved, and we not only have to think about the
‘rational’ choice but also about what another agent thinks is the rational choice.

The previous example was in a purely decision theoretic mode. We now con-
sider how the notion of ‘temperament-based’ rationality can be helpful in under-
standing two classic game theoretic examples. We consider as our first example
an agent (the husband) in a state of uncertainty and show how the play is affected
by his temperament.
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2.2 Example 2

In the Bach-Stravinsky game [8], the couple want to go to a concert but the wife
(row) prefers Bach and the husband prefers Stravinsky. But each would rather
go together than listen to their favourite composer by themselves.

Here are the payoffs. Row’s payoffs in each box are listed first.4

Fig. 1.

If they go to different events they are not happy so the payoffs are low for
both. If they go to the same event, then both have positive payoffs, but the
wife’s is higher if they go to the Bach and the husband’s is higher if they go to
Stravinsky. There are two Nash equilibria, the Bach-Bach one with payoffs (3,2),
and the Stravinsky-Stravinsky one with (2,3).

Figure 2 presents this as an extensive form game with the wife choosing first
and the husband next, but we leave it open whether the husband knows the
wife’s choice.

We consider various scenarios involving the husband’s knowledge and temper-
ament. We assume that the wife knows the husband’s payoffs and temperament
and he does not know hers.

Case 1) Husband does not know wife’s move (and she knows this).

a) He is aggressive. Then being aggressive, he will choose S (Stravinsky) for
his move since the highest possible payoff (for him) is 3. Anticipating his move,
she will also choose S, and they will end up with payoffs of (2,3).

b) The husband is conservative. Then not knowing what his wife chose, he will
choose B since the minimum payoff of 1 is better than the minimum payoff of 0.
Anticipating this, the wife will also choose B and they will end up with (3,2).

Case 2) Finally if the husband will know what node he is at (and the wife knows
this), then the wife, regardless of the husband’s temperament, will choose B.
The husband will also choose B and they will end up at (3,2).

2.3 Example 3

The centipede game (Figure 3) was introduced by Rosenthal in [10]. The game
starts at node A, with player 1 choosing his move: across or down. If he chooses
down, the game ends. If he chooses across, it will be player 2’s turn to choose
4 We have made the payoffs for Bach-Stravinsky and Stravinsky-Bach different so that

the extensive form is generic.
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Fig. 2.

at node B. If player 2 chooses across at B, the game will continue to node C
where player 1 will choose a move again and so on. The numbers in brackets
next to the nodes indicate the player that will play at that node. The first payoff
belongs to player 1 and the second to player 2.

Aumann showed, using backward induction and common knowledge of ratio-
nality that player 1 would choose down at node A, ending the game and forgoing
the higher payoffs later on. [2]

The argument is roughly as follows. If the game ever reached node E, then 1
would choose down, getting 6 rather than across, getting only a 5. This choice
by 1 would yield 2 a payoff of 5. But then at D, player 2, anticipating 1’s move
at E, and knowing that 1 is rational would say, “Why should I choose across
and get 5 when I can choose down right now and get 6?” Thus at D, 2 would
choose down and 1 would only get 3. Working backward this way from E to D
to C to B to A, we get the conclusion that at node A, 1 would choose down.

But this argument requires backward induction, and deep consideration by
both 1 and 2 of each other’s mindsets. Can this be avoided?

Indeed Artemov [1] uses a simpler method to derive the same result as Au-
mann. Artemov defines a rational player as one who makes a decision based
on the “highest guaranteed payoff”, subject to the player’s knowledge. In other
words he describes as rational the kind of player we have chosen to call conser-
vative.

He then shows (his Theorem 1) that in the centipede game, a rational player
in his sense will follow the backward induction solution even in the absence of
common knowledge of rationality. This follows easily from the observation that
at each node, the unique payoff (for the player whose turn it is) from choosing
down is higher than the lowest possible payoff from going across.

Thus Artemov generalizes Aumann’s result, replacing common knowledge of
rationality by plain rationality.5

Now consider a moderate player playing this game. If he had been conservative
and used backward induction, then as we saw he would choose down at once and

5 Artemov’s argument applies only to the centipede game. For other games Artemov’s
solution could diverge from the backward induction solution.
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Fig. 3.

get a certain payoff. But since he is a moderate, he will see that the median from
playing across is much higher. If both players are moderate players, and agnostic
about the rest of the game, then the game will continue for quite a while, with
both players choosing across and earning much larger payoffs. Thus our notion of
a moderate player shows the rationality of the common pattern seen in ordinary
behaviour (see [6] for instance) where players play across for quite a while.

3 Comparison with Previous Work

The issue we have discussed so far is: if a player has preferences among elements
of a certain ordered set, how does that preference translate to preferences among
subsets? In the previous discussion we used a selection function f to convert an
ordering between elements to an ordering between sets. But the problem has
been looked at more abstractly without relying on a selection function.

Suppose for instance that a voter has preferences among candidates for an
election, how will that translate to preferences among slates of candidates? Two
conditions which relate preferences among individual elements to preferences
among subsets are discussed in [5,3].

Let R be a linear order on a set X and let P be the strict order part of R,
i.e. xPy iff xRy ∧ ¬yRx. Let Ξ be the set of all finite subsets of X and let �
be an order on Ξ. 
 is the strict part of �. For singleton sets, we assume that
{x} � {y} iff xRy. So singletons follow their (unique) elements. [5,3] discuss two
conditions on R and 
.

Dominance: For all A ∈ Ξ and x ∈ X
(i) [xPy for all y ∈ A] → A ∪ {x} 
 A
(ii) [yPx for all y ∈ A] → A 
 A ∪ {x}

Independence: For all A, B ∈ Ξ, for all x ∈ X − A ∪ B
A 
 B → A ∪ {x} � B ∪ {x}

(Note: we are using the symbol “–” also for set subtraction.)

The conditions Dominance and Independence are called (G) and (M) by Kannai
and Peleg [5] who showed that if X has at least six elements then these very
natural conditions are incompatible.
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If we use the technique of comparing the minimum, the maximum or the
median as ways of comparing sets, then all three techniques satisfy a weaker
form of the dominance condition.

Weak Dominance: For all A ∈ Ξ and x ∈ X
(i) [xPy for all y ∈ A] → A ∪ {x} � A
(ii) [yPx for all y ∈ A] → A � A ∪ {x}

For instance, suppose we say that A � B iff min(A) ≥ min(B) then this def-
inition of � satisfies both independence and weak dominance. max also obeys
independence and weak dominance.

However, independence fails all SCFs except the min and the max. Suppose
that there is an n such that 1 < s(n) < n. It follows that there is an n such that
s(n) < s(n+1) = s(n)+1 < n+1. (Take the smallest n such that s(n) < s(n+1)).
Let m = s(n) and m + 1 = s(n + 1).

To simplify notation, say n = 5, m = 2. Let X = {1, 5, 6, 8, 9} and Y =
{1, 4, 7, 8, 9}. Then clearly f will pick 5 from X and 4 from Y so X will be
greater than Y .

Add 10 to both sets. X ′ = {1, 5, 6, 8, 9, 10} and Y ′ = {1, 4, 7, 8, 9, 10}. Now f
will pick 6 from X ′ and 7 from Y ′ so Y ′ will be greater than X ′.

3.1 Seidenfeld’s Result

Can we justify choices based on ordinal utilities as choices made on the basis
of unknown cardinal utilities and subjective probabilities? In other words, can
we take the point of view that if we knew the cardinal utitlies and subjective
probabilities then we would make the same choices which our principles justify?

Suppose6 that the set of possible outcomes of an act are identified by their
ordinal ranks, i.e. f identifies the ordinally ranked possible outcomes of an act
Ai: f(Ai) = {ri,1, ..., ri,n} where for convenience, ri,j < ri,k iff j < k. We assume
that these are increasing ordinal ranks.

Say that one set of ordinally ranked outcomes {r1, ..., rj} is strictly inferior
to another set {rk, ..., rn} if rj < rk, i.e., if all the possible outcomes in the first
set are ordinally dispreferred to all of those in the second set. Write this as

{r1, ...rj} � {rk..., rn}
Given two acts/options {A1, A2} write CA1,A2 = f(A1) ∩ f(A2), those possible
outcomes they have in common.

Now to restate the “suspect” ordinal decision rule (independence).
If f(A1) − CA1,A2 � f(A2) − CA1,A2 then A1 ≺ A2

Proposition 2. There is no Bayes model for this decision rule. That is, there is
no consistent assignment of probabilities to states of uncertainty such that for all
6 The following result about condition 4 of definition 1 was proved by Teddy Seidenfeld

[12] on the first author’s birthday after hearing his talk at CMU on November 20,
2011. It is included here with his permission. His A1 is our A and his A2 is our B
when comparing with condition 4 of definition 1.
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cardinal utilities consistent with the ordinal ranks, ≺ agrees with a comparison
of SEU (subjective expected utility).

The proposition follows from the following lemma.

Lemma 2. Consider a family of acts defined (measurable) with respect to a
common k-fold partition Ωk = {ω1, ..., ωk}. Then the only Bayes models consis-
tent with the suspect rule applied to this family require p(ωj) = 1/k (j = 1, ..., k)
a uniform distribution over Ωk.

The proposition follows by considering two families of acts. The first family
is defined with respect to Ωk. The second family is defined with respect to a
coarsened partition Ω′

k−1 where ω′
i = ωi : i ≤ k − 2 and ω′

k−1 = {ωk−1, ωk}.
That is, Ω′

k−1 is obtained by coarsening the last two elements of Ωk.
By the lemma, from the first family, p(ω1) = 1/k, and from the second family

p(ω′
1) = 1/(k − 1). But ω′

1 = ω1.
To get an intuition about the lemma7, suppose that k = 2 and the states

ω1, ω2 have probabilities .6 and .4 respectively. Let act A have outcomes 10 and
5 in states ω1, ω2 respectively, and let act B have outcomes 5 and 11 in the two
states. Then the suspect principle says that act B should be preferred. However,
the expected utility of act A is 6 + 2 = 8 and that of B is 3 + 4.4 = 7.4 which is
lower. Thus condition 4, definition 1, can force us to go against expected utility
if the probabilities of the various outcomes are not equal.

The lemma is established by considering acts such as:

ω1 ω2 . . . ωk−2 ωk−1 ωk

Ak
1 1 2 . . . k − 2 k − 1 k

Ak
2 1 2 . . . k − 2 k + 1 k − 1

So CAk
1 ,A

k
2

= {1, ..., k − 1},
f(Ak

1) − CAk
1 ,A

k
2

= {k}, and
f(Ak

2) − CAk
1 ,A

k
2

= {k + 1}.
Hence, A1 ≺ A2 by the suspect rule, since {k} � {k + 1}.

The only Bayes models for the “ordinal” preference that are invariant over all
conditional utilities consistent with these ordinal ranks require p(ωk−1) ≥ p(ωk).

By considering automorphisms on Ωk and the induced automorphisms on Ak
1

and Ak
2 , we get

p(ωi) ≥ p(ωj) ∀i, j such that 1 ≤ i, j ≤ k

That is, then p(ωi) = 1/k, i = 1, ..., k as claimed.
Seidenfeld’s result indicates a certain tension between choices based on purely

ordinal utilities and the idea that ordinal choices should be consistent with pos-
sible (but unknown) cardinal utilities.

7 This particular paragraph is not due to Seidenfeld, but is furnished by us, PTW, to
help along the reader’s intuition.
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4 Concluding Remarks

We have reviewed some classical results on the transfer of choices from points to
sets of points and suggested some ways in which an agent might act, who lacks
an access to cardinal utilities and probabilities, but does know how she would
choose between pairs of points. Various classical results, e.g. by Kannai and
Peleg, and the new one by Seidenfeld show that the task is not free of problems.
But it is a real task nonetheless. The world did not stop having elections when
Arrow’s theorems were proved. In conclusion, one must do the best one can with
a defective tool.

We end with a general remark about rationality which is especially relevant
when logical omniscience is not pre-supposed.

Three Aspects of Rationality

1. Making the best of the choices one believes oneself to have.
2. Fully using logic to eliminate impossible choices.
3. Using psychology to predict the choices of other people.

Perhaps we should keep these three aspects separate and reason about them
separately.
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Abstract. It is shown that the inhabitation problem for intersection
types without the intersection introduction rule is Expspace-complete
and that the further restriction without subtyping is Pspace-complete.

1 Introduction

We consider the complexity of the inhabitation problem (is there a pure λ-term
that can be assigned a given type?) for the λ-calculus with intersection types [4]
under the restriction that the intersection introduction rule (∩I) is eliminated.
We refer to the restricted system as λ(−∩I). Whereas the inhabitation problem
for the full intersection type system is undecidable [16], it was shown by Kurata
and Takahashi [7] that the inhabitation problem for λ(−∩I) is decidable. How-
ever, the question of complexity of the inhabitation problem for λ(−∩I) was left
open. We prove here that the problem is Expspace-complete. In addition, we
show that the further restriction without subtyping is Pspace-complete.

The system λ(−∩I) is a natural restriction of the full intersection type sys-
tem [4], because it is equivalent to the explicitly typed version (“Church style
fragment”) of that system [7, Lemma 3.1]), in which all abstractions are of the
form λx : τ.M . One can also say that in system λ(−∩I) intersections are explicit
because, in the absence of intersection introduction, they cannot be introduced
by the typing rules.

The full intersection type system arises from the Curry-style simply-typed
λ-calculus [2] by addition of the rules

Γ �M : τ1 Γ �M : τ2
Γ �M : τ1 ∩ τ2 (∩I)

Γ �M : τ1 ∩ τ2
Γ �M : τi

(∩E)
Γ �M : τ τ ≤ τ ′

Γ �M : τ ′
(≤)

where the subtyping rule (≤) refers to a certain quasi-order on types. Usually,
the intersection elimination rule (∩E) is contained in the subtyping theory, by
the axiom τ1 ∩ τ2 ≤ τi, and consequently rule (∩E) is left out in systems with

� Partly supported by MNiSW grant N N206 355836.

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 256–270, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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subtyping thus presented (we follow this convention in the present paper). How-
ever, in the standard core system without subtyping, the rule (∩E) is present. In
the present paper, we consider the system λ(−∩I), where (∩I) is eliminated (and
(∩E) is contained in rule (≤)) as well as the system λ(−∩I) without subtyping,
in which (∩E) is present and both of the rules (∩I) and (≤) are absent.

Intersection type systems belong to a class of propositional logics with enor-
mous expressive power. Intersection types capture several semantic properties of
λ-terms, and their type reconstruction problem has long been known to be unde-
cidable, since they characterize exactly the set of strongly normalizing terms [11].
The inhabitation problem for the full system is undecidable [16] and is closely
related to the λ-definability problem [13].

Our result adds to a recently growing body of knowledge concerning the fine
structure of the intersection type inhabitation (provability) problem obtained
by considering various restrictions of the system. Recall that the borderline be-
tween decidability and undecidability was clarified in [8,17] by rank restrictions
(as defined in [9]), with inhabitation in rank 2 types being shown Expspace-
complete and undecidable from rank 3 and up. The system without intersection
elimination (∩E) was shown to be decidable in [18] (the upper bound is non-
elementary and the exact complexity is open). In finite combinatory logic with
intersection types [12] (combinatory logic with intersection types [5] restricted
to monomorphic types) inhabitation is Exptime-complete with or without sub-
typing. Finite combinatory logic with intersection types can be presented as the
restriction of system λ(−∩I), in which the function type introduction rule (→ I)
is eliminated. Seen in this perspective, the present result allows us to compare
the relative complexity of the explicitly typed rule (→ I) in terms of inhabita-
tion complexity (Exptime vs. Expspace). Following [12], inhabitation can be
seen as a foundation for type-based function composition synthesis. Under this
perspective, our result determines the complexity of synthesis in the “Church-
style” fragment of the intersection typed λ-calculus. Finally, our present result
shows that, in contrast to some other restrictions (e.g., finite combinatory logic),
the presence of subtyping makes a big difference (Expspace vs. Pspace). In-
tuitively, in system λ(−∩I), subtyping can express a certain part of the logic
contained in intersection introduction. For example, the judgment

f : (p→ q) ∩ (r → s), x : p ∩ r � fx : q ∩ s
is derivable in the full system without subtyping (because fx : q and fx : s
can be derived separately), and also in system λ(−∩I) with subtyping (because
(p→ q)∩(r → s) ≤ p∩r → q∩s), but not in system λ(−∩I) without subtyping.1

The situation is summarized in the following overview, where we list the known
results for the various restrictions mentioned above. In addition to the rank
restrictions we consider the cases where one or more of the rules (∩I), (∩E), (≤),
(→I) are eliminated (indicated by a “−”). In the cases where rule (≤) is not
eliminated, the presence or absence of rule (∩E) is immaterial.

1 However, subtyping and (∩I) are in general incomparable: for instance the judgment
� I : (p→ p) ∩ (q → q) requires (∩I), while x : p→ q ∩ r � x : p→ q requires (≤).
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Rank k = 2 : Expspace-complete
Rank k > 2 : Undecidable
−(∩I) : Expspace-complete
−(∩I, ≤) : Pspace-complete
−(∩E, ≤) : Decidable
−(→I) : Exptime-complete
−(→I, ≤) : Exptime-complete

Let us note here that alternation [3] plays a fundamental role in problems of type
inhabitation. Intuitively, we may need to consider subgoals of the form Γ � ? : τ
where the inhabitant (indicated by “?”) is an application of the form (xY1 . . . Yn).
This is equivalent to asking whether there exists a variable x in Γ with a type
of the form τ1 → · · · → τn → τ such that all of the types τ1 through τn
are inhabited. Hence, one can cast the Pspace-algorithm for inhabitation in
simple types [14] as an alternating polynomial time procedure (see also [15]). In
intersection type systems, inhabitation goals may involve questions of the form
Γ � ? : τ1 ∩ τ2 leading to the parallel (universal) questions of inhabitation in τ1
and τ2 by some single term X . In the present paper, our exponential space upper
bound is achieved by an alternating exponential time procedure, and our lower
bound relies on the computational model of bus machines , introduced in [17],
which generically simulates alternating exponential time Turing machines.

Comparing the Expspace-completeness of inhabitation with rank 2 types [17]
to our present result, it is remarkable that the same model (bus machines) is
used as a basis of reduction in the hardness proofs in both cases. However, the
reduction must be adjusted, as a result of fundamental differences in the systems
under consideration. In the former case, types are restricted (rank 2) and the
typing rules are unrestricted, whereas here we consider unrestricted types with
restricted rules (see Section 3).

2 Preliminaries

Types: Type expressions, ranged over by τ, σ etc., are defined by

τ ::= a | τ → τ | τ ∩ τ

where a, b, c, . . . range over atoms comprising of type constants, including the
constant ω, and type variables. As usual, types are taken modulo commutativity
(τ ∩ σ = σ ∩ τ), associativity ((τ ∩ σ) ∩ ρ = τ ∩ (σ ∩ ρ)), and idempotency
(τ ∩ τ = τ ). A type environment Γ is a finite set of type assumptions of the
form x : τ , and we let dm(Γ ) and rn(Γ ) denote the domain and range of Γ .

A type τ ∩ σ is said to have τ and σ as components. For an intersection of
several components we sometimes write

⋂n
i=1 τi or

⋂
i∈I τi or

⋂{τi | i ∈ I},
where the empty intersection is identified with ω.

If τ = τ1 → · · · → τn → σ, then we write σ = tgtn(τ) and τi = argi(τ), for
i ≤ n. A type of the form τ1 → · · · → τn → p, where p �= ω is an atom, is called
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a path of length n. A type τ is organized if it is a (possibly empty) intersection
of paths (those are called paths in τ). Note that premises in an organized type
do not have to be organized, i.e., organized is not necessarily normalized [6].

Subtyping: Subtyping ≤ is the least quasi-order (reflexive and transitive rela-
tion), satisfying the following conditions:

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, σ ≤ σ ∩ σ;

(σ → τ) ∩ (σ → ρ) ≤ σ → τ ∩ ρ;

If σ ≤ σ′ and τ ≤ τ ′ then σ ∩ τ ≤ σ′ ∩ τ ′ and σ′ → τ ≤ σ → τ ′.
We identify σ and τ when σ ≤ τ and τ ≤ σ. Note that τ → ω = ω, for all τ .
The distributivity properties below follow from the axioms of subtyping:

(σ → τ) ∩ (σ → ρ) = σ → (τ ∩ ρ)

(σ → τ) ∩ (σ′ → τ ′) ≤ (σ ∩ σ′)→ (τ ∩ τ ′)
The following property, probably first stated in [1], is often called beta-soundness .
Note that the converse is trivially true.

Lemma 1. Let aj , for j ∈ J , be atoms.

1. If
⋂
i∈I(σi → τi) ∩

⋂
j∈J aj ≤ α then α = aj, for some j ∈ J .

2. If
⋂
i∈I(σi → τi) ∩

⋂
j∈J aj ≤ σ → τ , where σ → τ �= ω, then the set

{i ∈ I | σ ≤ σi} is nonempty and
⋂{τi | σ ≤ σi} ≤ τ .

Lemma 2. Every type τ has an equivalent organized type τ , computable in poly-
nomial time.

Proof: Define a = a if a is an atom, and τ ∩ σ = τ ∩ σ. If σ =
⋂
i∈I σi then

take τ → σ =
⋂
i∈I(τ → σi). �	

In what follows types are assumed to be organized.

Lemma 3. Let
⋂
i∈I τi ≤ β1 → · · · → βn → p, where τi are paths. Then there

is an i ∈ I such that τi = α1 → · · · → αn → p and βj ≤ αj , for all j ≤ n.
Proof: Induction with respect to n, using the beta soundness (Lemma 1). �	
Following [7], we define the least upper bound σ1 ⊕ · · · ⊕ σn of organized types
σ1, . . . , σn as the intersection of all paths of the form

(α1
1 ∩ · · · ∩ α1

n)→ · · · → (αk1 ∩ · · · ∩ αkn)→ p,

where p �= ω is an atom and, for all i ≤ n, type α1
i → · · · → αki → p is a path

in σi. It should be obvious that σi ≤ σ1 ⊕ · · · ⊕ σn, for all i ≤ n. We show that
it is actually the l.u.b.:

Lemma 4. If σi ≤ τ , for all i ≤ n, then σ1 ⊕ · · · ⊕ σn ≤ τ .
Proof: We prove the claim for τ = τ1 → · · · → τk → p being a path. (The gen-
eral case then follows easily.) By Lemma 3 there are paths α1

i → · · · → αki → p

in σi such that τ j ≤ αji , for all i, j. Then in σ1 ⊕ · · · ⊕ σn we have a path

π = (α1
1 ∩ · · · ∩ α1

n) → · · · → (αk1 ∩ · · · ∩ αkn) → p. Since τ j ≤ αj1 ∩ · · · ∩ αjn, we
obtain π ≤ τ , whence σ1 ⊕ · · · ⊕ σn ≤ τ . �	
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Type Assignment

We consider the standard intersection type assignment system [4] for pure λ-terms
without the rule for intersection introduction. The system is shown in Figure 1.
As already noted, the system is equivalent to the explicitly typed version of the
standard system (see [7]). We have the following generation lemma:

Γ, x : τ � x : τ
(var)

Γ �M : τ → τ ′ Γ � N : τ

Γ � (M N) : τ ′
(→E)

Γ, x : τ �M : τ ′

Γ � λxM : τ → τ ′
(→I)

Γ �M : τ τ ≤ τ ′

Γ � M : τ ′
(≤)

Fig. 1. Type system λ(−∩I)

Lemma 5

1. If Γ �MN : τ then Γ �M : σ → τ , and Γ � N : σ, for some σ.

2. If Γ � xN1 . . .Nk : τ then Γ (x) ≤ σ1 → · · · → σk → τ , where Γ � Ni : σi,
for all i ≤ k. In particular, Γ � x : τ implies Γ (x) ≤ τ .

3. If Γ � λxM : τ then there are σ, ρ with Γ, x :σ �M : ρ and σ → ρ ≤ τ .
Proof: Routine. Type derivation ends with a logical rule followed by subsump-
tion. In part 2 use induction. �	
Subject reduction now follows easily:

Lemma 6. If Γ �M : σ and M �β M
′ then Γ �M : σ.

Proof: Standard induction using the substitution property: If Γ, x : τ � M : σ
and Γ � N : τ then Γ �M [N/x] : σ. �	
System λ(−∩I) has the strong normalization property, as a subsystem of the
ordinary intersection type-assignment. It therefore follows from Lemma 6 that
an inhabited type must have a normal inhabitant.

Lemma 7. If Γ �M : σ then there is a normal form M ′ with Γ �M ′ : σ.

The crucial Lemmas 9 and 11 below characterize types of normal forms. To prove
them we need the following simple property:

Lemma 8. If τ ≤ σ and Γ, x : σ �M : ρ then also Γ, x : τ �M : ρ.

Proof: Routine induction. �	
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Lemma 9. The following are equivalent conditions:

1. Γ � λxM :
⋂
i∈I(τi → σi);

2. Γ, x :
⊕

i∈I τi � M :
⋂
i∈I σi.

Proof: (1 ⇒ 2) By the generation lemma, we have Γ, x : τ � M : σ, with
τ → σ ≤ ⋂

i∈I(τi → σi). That is, τi ≤ τ and σ ≤ σi, for every i. It follows that⊕
i∈I τi ≤ τ (by Lemma 4) and σ ≤ ⋂

i∈I σi, and we use Lemma 8.
(2⇒ 1) If (2) then Γ � λxM :

⊕
i∈I τi →

⋂
i∈I σi and we apply subsumption

using the inequality
⊕

i∈I τi →
⋂
i∈I σi ≤

⋂
i∈I(τi → σi). �	

Remark 10. Observe that Lemma 9 has the following “paradoxical” consequence:
An abstraction of type

⋂
i∈I(τi → σi) must have type

⋂
i,j∈I(τi → σj). It is also

not enough to know that Γ, x : τi � M : σi holds for all i ∈ I to conclude that
Γ � λxM :

⋂
i∈I(τi → σi). The latter remains true even if all σi are the same:

the conjunction of x : τ �M : σ and x : ρ �M : σ does not imply x : τ⊕ρ �M : σ.
Indeed, we have x : (p → p) → q � xI : q and x : (r → r)→ q � xI : q. But, on
the other hand, ((p→ p)→ q)⊕ ((r → r)→ q)= (p → p) ∩ (r → r) → q and
x : (p→ p) ∩ (r → r)→ q � xI : q, because � I : (p→ p) ∩ (r → r).

Lemma 11 (Path Lemma). The following are equivalent conditions:

1. Γ � xN1 . . .Nk : τ ;
2. There exists a set P of paths in Γ (x) such that

(a)
⋂
π∈P tgtk(π) ≤ τ ;

(b) Γ � Ni :
⋂
π∈P arg i(π), for all i ≤ k.

Proof: (1⇒ 2) Similar to the proof of Lemma 10 in [12]. By Lemma 5 we have
Γ (x) ≤ σ1 → · · · → σk → τ , where Γ � Ni : σi, for all i ≤ k. Now, assume
that Γ (x) is organized and let ρ be the organized form of σ1 → · · · → σk → τ .
We apply lemma 3 to every path in ρ. This yields a set P of paths in Γ (x)
such that, for every path μ in ρ, there is π ∈ P with σi ≤ arg i(π) and also
tgtk(π) ≤ tgtk(μ). Since all paths in (organized) τ are of the form tgtk(μ), we
obtain

⋂
π∈P tgtk(π) ≤ τ (part 2a). Part 2b follows by subsumption.

(2⇒ 1) Easy (as in [12]). �	

3 Expspace-Completeness of Inhabitation

We study the inhabitation problem for system λ(−∩I), formulated as follows:

Given an environment Γ and a type τ ,
does there exist a λ-term M such that Γ �M : τ ?

Our main result, Theorem 19 states that the problem is Expspace-complete.
We prove the exponential space upper bound in Section 3.1 and the lower bound
in Section 3.2.
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The upper bound is achieved by constructing an alternating exponential time
algorithm. We exploit the fact, also noted in [7], that least upper bounds of
types with respect to ≤ are definable. Our algorithm is quite different from the
algorithm of [7], which relies on a fixpoint construction that reduces inhabitation
to the emptiness problem for a class of context-free grammars. No specific upper
bound was given in [7].

The lower bound is achieved by reduction from a slight variation of the bus
machine model introduced in [17] which generically simulates alternating expo-
nential time Turing machines. The reduction exploits distributivity properties
of the subtyping relation together with the definability of least upper bounds.

3.1 Expspace Upper Bound

Algorithm

Lemmas 9 and 11 together define an alternating algorithm to check type inhabi-
tation in system λ(−∩I). The algorithm is formalized in Figure 2, which specifies
an alternating Turing machine accepting on input Γ and τ if and only if there
exists a normal inhabitant of τ in the environment Γ . (Note that, by Lemma 7,
we only need to consider inhabitants in normal form.)

Recall ([3], see also, e.g., [10, section 16.2]) that the state set Q of an alternat-
ing Turing machine is partitioned into two subsets, Q = Q∃ ∪Q∀. States in Q∃
are referred to as existential states, and states in Q∀ are referred to as universal
states. A configuration whose state is in Q∀ is accepting if and only if all its
successor configurations are accepting, and a configuration whose state is in Q∃
is accepting if and only if at least one of its successor configurations is accepting.

In the specification in Figure 2 we use shorthand notation for instruction
sequences starting from existential states (choose . . .) and instruction sequences
starting from universal states (forall(i = 1 . . . k)Si). For example, a command
of the form choose x ∈ S branches from an existential state (associated with the
choose-command) to successor states in which x gets assigned distinct elements
of S. A command of the form forall(i = 1 . . . k)Si branches from a universal
state (associated with the forall-command) to successor states from which
each instruction sequence Si is executed.

For an organized type σ, we let ‖σ‖ denote the maximal length of a path in σ.
The symbol Pk(σ) denotes the set of all paths of length k or more in organized
type σ.

Proposition 12. Inhabitation in system λ(−∩I) is in Expspace.

Proof: We process problems of the form Γ � τ , where τ is organized and every
Γ (x) is a sum (

⊕
) of organized types. There are two cases, nondeterministically

chosen. One is justified by Lemma 9, the other by Lemma 11.

Case 1: For τ =
⋂
i∈I(τi → σi), ask if Γ, x :

⊕
i∈I τi �

⋂
i∈I σi.

Case 2: We guess x and k and a set P of paths in Γ (x). That suffices to verify
condition (2b) of Lemma 11.
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Input : Γ, τ

1 G := {(Γ, τ )};

2 loop :
3 τ := organize(τ );
4 choose case ∈ {1, 2};
5 if (case = 1) then
6 if(τ =

⋂
i∈I(τi → σi)) then

7 if(
⊕

i∈I τi �∈ rn(Γ )) then
8 Γ := Γ ∪ {x :

⊕
i∈I τi} where x is fresh;

9 τ :=
⋂

i∈I σi;
10 if((Γ, τ ) ∈ G) then reject
11 else
12 G := G ∪ {(Γ, τ )};
13 goto loop;
14 else reject;

15 if (case = 2) then
16 choose (x : σ) ∈ Γ ;
17 choose k ∈ {0, . . . , ‖σ‖};
18 choose P ⊆ Pk(σ);
19 if(

⋂
π∈P tgtk(π) ≤ τ ) then

20 if(k = 0) then accept
21 else
22 forall(i = 1 . . . k)
23 τ :=

⋂
π∈P arg i(π);

24 if((Γ, τ ) ∈ G) then reject
25 else
26 G := G ∪ {(Γ, τ )};
27 goto loop;
28 else reject;

Fig. 2. Alternating exptime-Turing machine

To handle condition (2a) assume for a moment that τ is a path. By Lemma 3,
the inequality (2a) holds if and only if we have tgtk(π) ≤ τ for a single π ∈ P .
If τ is an intersection of paths, we need one π ∈ P for each.

At all stages, we ask questions of the form Γ � τ , where τ is an intersection
of (organized form of) disjoint subterms of the original type. It takes linear
space to write down each such τ . Types in Γ are sums of such disjoint subterms.
The environment can only grow and one can optimize by assuming that no
type is repeated (Figure 2 line 7). There are at most exponentially many such
intersections and sums.
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The variable G is an auxiliary device to prevent repeating goals. As inhabitation
goals (Γ, τ) are generated (starting with the input goal), they are accumulated
in G along branches of the computation tree to ensure that a goal (Γ, τ) is only
considered in a branch if it has not already been considered in the branch.

It follows that the depth of alternating paths of computation are exponentially
bounded and hence the (alternating) time used by the procedure is at most ex-
ponential. The proposition now follows from the well-known identity Aexptime
= Expspace [3, Corollary 3.6]. �	

3.2 Expspace Lower Bound

The lower bound is obtained by encoding the halting problem for bus machines
into the inhabitation problem. A bus machine is an alternating computing device
operating on a finite word (bus) of a fixed length. At every step the whole
contents of the bus is updated according to one of the instructions of the machine.
In addition new instructions may be created each time to be used in the future.
A precise definition is as follows.

A simple switch over a finite alphabet A is a pair of elements of A, written
a← b. A labeled switch is a quadruple, written a← b(c← d), where the simple
switch c← d is the label. Finally, a universal switch is a triple, written a← b×c.

Formally, a bus machine is a tupleM = 〈A,m,w0, w1, I 〉, where A is a finite
alphabet, m > 0 is the bus length of M (the length of the words processed),
w0 and w1 are words of length m over A, called the initial and final word ,
respectively, and I is the set of global instructions .

Every global instruction is an m-tuple I = 〈 I1, . . . , Im 〉 of sets of switches.
Switches in Ii are meant to act on the i-th symbol of the bus. It is required that
all switches in a given instruction I are of the same kind: either all are simple, or
all are labeled, or all are universal. Therefore we classify instructions as simple,
labeled, and universal. A local instruction is an m-tuple of simple switches and is
considered a special case of a simple instruction (singletons at all coordinates).

A configuration ofM is a pair 〈w,J 〉, where w is a word over A of length m,
and J is a set of local instructions. The initial configuration is of course 〈w0,∅ 〉,
and any configuration of the form 〈w1,J 〉 is called final .

Suppose that I = 〈 I1, . . . , Im 〉, and let w = a1 . . . am and w′ = b1 . . . bm,
w′′ = c1 . . . cm.

– If I is a simple instruction, and for every i ≤ m the simple switch ai ← bi
belongs to Ii, then 〈w,J 〉 ⇒I

M 〈w′,J 〉;
– If for every i ≤ m there is ai ← bi(ci ← di) in Ii, then 〈w,J 〉 ⇒I

M 〈w′,J ′ 〉,
where J ′ = J ∪ {〈 c1 ← d1, . . . , cm ← dm 〉};

– If I is universal and ai ← bi×ci is in Ii, for i ≤ m, then 〈w,J 〉 ⇒I

M 〈w′,J 〉,
and also 〈w,J 〉 ⇒I

M 〈w′′,J 〉.
A configuration 〈w,J 〉 is accepting iff it is either a final configuration, or

– There exists a non-universal instruction I, such that 〈w,J 〉 ⇒I

M 〈w′,J ′ 〉
and 〈w′,J ′ 〉 is accepting, or
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– There is a universal instruction I such that we have 〈w,J 〉 ⇒I

M 〈w′,J 〉
and 〈w,J 〉 ⇒I

M 〈w′′,J 〉, where both 〈w′,J 〉 and 〈w′′,J 〉 are accepting.

The machine M halts iff the initial configuration is accepting.

Example 13. This example is repeated after [17], and is based on the ideas of [8].
Let A = {0, 1}, I = {0← 0, 1← 1}, I+ = {0 ← 1}, and I− = {1 ← 0}. Take
M = 〈A, 4, 0000, 1111, I 〉, where I consists of the following tuples (note that
all global instructions are simple).

(I, I, I, I+), (I, I, I+, I−), (I, I+, I−, I−), (I+, I−, I−, I−).

The machineM makes 24− 1 steps and halts after it has seen all binary strings
of length 4.

Example 14. This example demonstrates how local instructions work. We modify
Example 13 so that A = {0, 1, 2, 3} and

I = {0← 0(2←2), 1← 1(3←3)}, I+ = {0← 1(2←3)}, I− = {1← 0(3←2)}.
In addition, let I∗ = {1 ← 2}. Our new machine is M = 〈A, 4, 0000, 3333, I 〉,
where I consists of the following tuples

(I, I, I, I+), (I, I, I+, I−), (I, I+, I−, I−), (I+, I−, I−, I−), (I∗, I∗, I∗, I∗).

For the first 24 − 1 steps the machine behaves as in Example 13, using global
instructions only. This time however, every application of a global instruction cre-
ates a new unique local instruction. After arriving at 1111 the machine rewrites
the bus to 2222 and then executes one by one all the local instructions, finally
reaching the final 3333. Observe that the number of local instructions is expo-
nential and so is the (implicit) space needed to store them.

The following result was shown in [17].

Proposition 15. The halting problem for bus machines is Expspace-complete.

The proof of Proposition 15 makes an essential use of both alternation and the
ability of bus machines to create local instructions. Without the latter (when all
global instructions are either simple or universal) the problem turns out to be
complete in Exptime, and that is implicit in [8], because such bus machines are
of the same power as alternating linear bounded automata.

Without alternation, as usual, the problems classify one step lower in the
hierarchy (as Exptime- and Pspace-complete, respectively).

We need a slightly improved version of Proposition 15. Call a bus machine
M = 〈A,m,w0, w1, I 〉 separated , when the alphabet A is a union of m disjoint
alphabets Ai and all links in the i-th component of every instruction are built
exclusively from symbols in Ai. We have

Corollary 16. The halting problem for separated bus machines is Expspace-
complete.

Proof: Simply replace A by a disjoint union of m copies of A and rewrite all
switches and the initial and final words accordingly. The new machine halts if
and only if the original one halts, because different components of the bus do
not interact at all. �	
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Exponential Space Hardness

We reduce the halting problem for separated bus machines to the inhabita-
tion problem. The principle of the encoding is similar to that in Section 3.3
of [17]. However, a major difference is that [17] deals with restricted types but
unrestricted rules. In particular, rule (∩I) makes it possible to simulate the m
coordinates of the bus by using an intersection. To inhabit this intersection one
looks for a single term solving the m problems represented by the components
of the intersection.

Now, in system λ(−∩I), we have restricted rules. Without rule (∩I) we cannot
create a parallel problem. Instead we represent a bus as an intersection of atoms.
By making the alphabets disjoint we ensure that an intersection of m atoms
represents only one word of length m, because we know that the i-th symbol
belongs to the i-th alphabet. Rather than simultaneously switching from ai to bi,
at every i = 1, . . . ,m, we switch from a1 ∩ · · · ∩ am to b1 ∩ · · · ∩ bm. To make
sure this works correctly, we need a new technique for coding rules, especially
labeled rules. For this, a major instrument is Lemma 17 below.

So letM = 〈A,m,w0, w1, I 〉 be separated, and assume that the final word is
f1 . . . fm, and the initial word is s1 . . . sm. Simple and universal switches of M
are encoded by types of the form a → b and a → b → c. A labeled switch
a← b(c← d), with a, b, c, d ∈ Ai, is encoded by

(((d→ c) ∩⋂
o∈A−Ai

(ω → o))→ b)→ a.

The following property is useful.

Lemma 17. Let di, ci ∈ Ai. Then
⊕m

i=1((di → ci) ∩
⋂
o∈A−Ai

(ω → o)) =
⋂m
i=1(di → ci).

Proof: According to the definition of
⊕

, each path in the left-hand side must
be of the form di ∩ ω ∩ · · · ∩ ω → ci, i.e., must be equal to di → ci. �	
A local instruction J = 〈 c1 ← b1, . . . , cm ← bm 〉 is encoded by the type
αJ =

⋂m
i=1(bi → ci). A global instruction I = 〈 I1, . . . , Im 〉 is encoded as the

intersection of types representing all switches in the union of I1, . . . , In. For ex-
ample, a simple instruction I = 〈 I1, . . . , Im 〉 with Ij = {ajk ← bjk | k = 1, . . . , qj}
for j = 1, . . . ,m, is represented by the type τ I defined by

τ I =
⋂{bjk → ajk | j = 1 . . .m, k = 1 . . . qj}.

Assuming I = {I1, . . . , In}, we take Γ = {x0 : f1 ∩ · · · ∩ fm, x1 : τ1, . . . , xn : τn},
where each τ j represents Ij . In addition, let ΓJ = Γ ∪ {yJ : αJ | J ∈ J }, for
any set J of local instructions.

A configuration 〈 e1 . . . em,J 〉 of the machine is now represented by the in-
habitation problem ΓJ � e1 ∩ · · · ∩ em. Here is what we need to prove.

Lemma 18. The configuration 〈 e1 . . . em,J 〉 is accepting if and only if there is
a term M satisfying ΓJ �M : e1 ∩ · · · ∩ em.
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Proof: The proof of “only if” goes by induction with respect to the definition
of acceptance.

Consider the case 〈 e1 . . . em,J 〉 ⇒Ij

M 〈 b1 . . . bm,J 〉, where Ij = 〈 I1, . . . , Im 〉
is simple and where ei ← bi is in the i-th component of Ij , for i = 1, . . . ,m, and
〈 b1 . . . bm,J 〉 is accepting. By induction hypothesis, there exists M such that
ΓJ �M : b1 ∩ · · · ∩ bm. By construction, we have (xj : τ j) ∈ ΓJ with

τ j ≤ ⋂m
i=1(bi → ei) ≤

⋂m
i=1 bi →

⋂m
i=1 ei

where the last inequality follows by distributivity properties of ≤. It follows that
ΓJ � xjM : e1 ∩ · · · ∩ em. The similar case of a universal instruction is left out.

Consider the case of a labeled rule Ij corresponding to the variable xj . We have
a switch ei ← bi(ci ← di) at every component, and an accepting configuration
〈 b1 . . . bm,J ∪ {J} 〉, where J = 〈 c1 ← d1, . . . , cm ← dm 〉. By the induction
hypothesis there is a term N such that

ΓJ , yJ : αJ � N : b1 ∩ · · · ∩ bm.

By Lemma 17, we have αJ =
⊕

i((di → ci) ∩
⋂
o∈A−Ai

(ω → o)), whence, by
Lemma 9,

ΓJ � λyJ N :
⋂
i[((di → ci) ∩

⋂
o∈A−Ai

(ω → o))→ bi]

Since Γ (xj) contains all paths (((di → ci) ∩
⋂
o∈A−Ai

(ω → o)) → bi) → ei, we

may conclude from Lemma 11 that ΓJ � xj(λyJ N) : e1 ∩ · · · ∩ em.
The “if” part is shown by induction with respect to M , where M is assumed

to be in normal form, cf. Lemma 7. Consider the case of M = xjM
′, where

(xj : τ j) ∈ ΓJ represents a simple instruction of the form Ij = 〈 I1, . . . , Im 〉.
Since ΓJ � xjM ′ : e1 ∩ · · · ∩ em, it follows from Lemma 5 that we must have
τ j ≤ ζ → ⋂m

i=1 ei, and ΓJ �M ′ : ζ, for some ζ.
By Lemma 1, we have ζ ≤ ⋂{bt | t ∈ T }, and

⋂{at | t ∈ T } ≤
⋂m
i=1 ei, where⋂

t∈T (bt → at) is a component of τ j . Since ei and at are atoms, we actually have
{ei | 1 ≤ i ≤ m} ⊆ {at | t ∈ T }. Assume for simplicity that {1, . . . ,m} ⊆ T , and
ei = ai, for all i. So ζ ≤ ⋂{bi | i = 1 . . .m} and thus ΓJ �M ′ : b1 ∩ · · ·∩ bm. By
induction hypothesis, 〈 b1 . . . bm,J 〉 is accepting. Moreover, by construction of τ j

together with τ j ≤ ζ → ⋂m
i=1 ei, it must be that ei ← bi is in the i-th component

of Ij , for i = 1 . . .m. It follows that 〈 e1 . . . em,J 〉 ⇒Ij

M 〈 b1 . . . bm,J 〉, and hence
〈 e1 . . . em,J 〉 is accepting.

The case of a universal instruction is similar. Again the most complex case is
when M = x(λy N). If ΓJ � M : e1 ∩ · · · ∩ em then, for every i, there must be
a component (((ai → bi) ∩

⋂
o∈A−Ai

(ω → o))→ ci)→ ei in Γ (x) such that

ΓJ � λy N :
⋂
i(((ai → bi) ∩

⋂
o∈A−Ai

(ω → o))→ ci).

Using again Lemmas 11 and 17, we see that ΓJ , y : αJ �
⋂
i ci, for an appropri-

ate J , and here we apply the induction hypothesis. �	

Theorem 19. The inhabitation problem for λ(−∩I) is Expspace-complete.

Proof: The problem is in Expspace by Proposition 12, hardness follows from
Corollary 16. Indeed, by Lemma 18, the machine M halts if and only if type
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γ1 → · · · → γk → s1 ∩ · · · ∩ sm is inhabited, where γi are all types from the
environment Γ . (Note that the initial J is empty.) �	

4 Pspace-Completeness without Subtyping

Systems of intersection types are often defined without subtyping, but with
the intersection elimination rule (∩E) (which is derivable in presence of the
subsumption rule). Such a restriction of λ(−∩I) is given in Figure 3.

Γ, x : τ � x : τ
(var)

Γ �M : τ → τ ′ Γ � N : τ

Γ � (M N) : τ ′
(→E)

Γ, x : τ �M : τ ′

Γ � λxM : τ → τ ′
(→I)

Γ �M : τ1 ∩ τ2
Γ �M : τi

(∩E)

Fig. 3. Type system λ(−∩I) without subtyping

Define a relation � as the least quasi-order such that:

– τ ∩ σ � τ ;
– If σ � σ′ then τ → σ � τ → σ′.

Lemma 20. If Γ � xN1 . . . Nk : σ then Γ (x) � τ1 → · · · → τk → σ, where
Γ � Ni : τi, for all i.

Proof: Induction. �	
A derivation is long normal when it only uses the following rules:

Γ (x : τ) � N : σ

Γ � λxN : τ → σ

Γ � Ni : τi (i = 1, . . . , k)
(Γ (x) � τ1→· · ·→ τk → α)

Γ � xN1 . . . Nk : α

where α is not an arrow type. The next lemma is almost literally the same as
proving that an inhabited simple type has a long normal inhabitant.

Lemma 21. If Γ �M : τ then there is a long normal derivation of Γ �M ′ : τ ,
for some M ′.

Proof: Without loss of generality, we can take M normal. We use induction
with respect to the size of M . If τ = σ → ρ and M = λz N , apply induction
to N . If M = zN1 . . . Nk, write τ as τ = ρ1 → · · · → ρm → α, with α not
an arrow type. Use Lemma 20, and apply induction to Γ � Ni : τi to obtain
terms N ′

i such that Γ � N ′
i : τi have long normal derivations. Finally define M ′

as the term λy1 . . . ym. zN
′
1 . . . N

′
ky1 . . . ym. �	
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Corollary 22. Inhabitation in system λ(−∩I) without subtyping is Pspace-
complete.

Proof: By Lemma 21 an inhabited type has an inhabitant with a long nor-
mal derivation. Therefore, a Pspace inhabitation algorithm can be obtained as
a slight modification of the ordinary Wajsberg/Ben-Yelles procedure for simple
types, as in e.g. [15]. The only difference is that, when looking for a proof of
a non-arrow type α, one chooses a “path” of the form τ1 → · · · → τk → α where
Γ (x) � τ1 → · · · → τk → α (rather than Γ (x) = τ1 → · · · → τk → α), for
some x. A path is selected nondeterministically by inspecting the tree of Γ (x)
from the root towards the leaves (may stop at an internal ∩-node). The case
Γ � τ → σ is reduced as usual to Γ � σ or Γ, x : τ � σ, with fresh x, depending
on whether τ ∈ rn(Γ ) or not.

The Pspace-hardness follows easily from Pspace-hardness of inhabitation in
simple types, since λ(−∩I) without subtyping is easily seen to be a conservative
extension of the simple typed system λ→ (if Γ contains only simple types, then
Γ �M : τ in λ(−∩I) is equivalent to Γ �M : τ in λ→). �	

5 Conclusion

We have considered the question of complexity of inhabitation for a natural
fragment of the intersection typed λ-calculus, in which intersections are explicit,
in the sense of “Church-style” type assumptions or, equivalently, in the sense
that intersections cannot be introduced. Decidability was shown by Kurata and
Takahashi [7], but the question of complexity was left open. In the present pa-
per we have settled the question: the problem is Expspace-complete. We have
emphasized the importance of subtyping by pointing out that the problem is
Pspace-complete in the absence of subtyping. Since decidable inhabitation can
be seen as a basis for automatic program synthesis problems [12], our result
determines the complexity of synthesis for the “Church-style fragment” of the
intersection typed λ-calculus. More generally, our result adds to the emerging
systematic understanding of the fine structure of intersection type systems.
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Abstract. The paper investigates sequences generated by reaction sys-
tems. Arbitrary sequences can be generated if the cardinalities of the sets
of reactants and inhibitors are unbounded. Most of the paper investigates
systems where both of these cardinalities equal 1. A general result is ob-
tained concerning sequences generated by systems with interaction. New
estimates are obtained for lengths of sequences in the non-interactive case.

Keywords: reaction system, inhibitor, reactant, state sequence, inter-
active process.

1 Introduction and Basic Definitions

Reaction systems were introduced by A. Ehrenfeucht and G. Rozenberg as a for-
mal model of interactions between biochemical reactions. The reader is referred
to [3] for some of the original motivation and initial setup. Each reaction is char-
acterized by its set of reactants, each of which has to be present for the reaction
to take place, by its set of inhibitors, none of which is allowed to be present, and
by its set of products, each of which will be present after a successful reaction.
Thus, a single reaction is based on facilitation and inhibition.

The model of reaction systems turned out to be suitable in a large variety
of different setups, and the possibilities are by far not exhausted. The reader is
referred to [1] for a survey.

However, in this paper we focus on some formal properties of the basic model,
neglecting eventual applications. The paper is largely self-contained. We will now
define the notions discussed in the paper.

Definition 1. A reaction over the base set S is a triple

ρ = (R, I, P ),

where R, I and P are nonempty subsets of S such that R and I do not intersect.
The three sets are referred as reactants, inhibitors and products, respectively.

Observe that no specific assumptions are made about the set P . In particular,
it may contain elements of R ∪ I. In this paper S will always denote the base
set. We usually denote its elements by natural numbers.

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 271–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The cardinality of a finite set X is denoted by �X. The empty set is denoted
by φ.

Definition 2. A reaction system AS over the base set S is a finite nonempty
set of reactions

{ρi| 1 ≤ i ≤ k},
over S.

We will omit the index S from AS whenever S is understood. We now come to
the basic definitions, dealing with operations and sequences.

Definition 3. Consider a reaction ρ = (R, I, P ) over S and a subset T of S.
The set T is enabled (with respect to ρ), in symbols enρ(T ), if R ⊆ T and
I ∩ T = φ. If T is (resp. is not) enabled, then we define the result by

resρ(T ) = P (resp. = φ).

For a reaction system A = {ρi| 1 ≤ i ≤ k}, we define the result by

resA(T ) =

k⋃

i=1

resρi(T ).

As an example, let A1 be a reaction system over the base set {1, 2, 3}, consisting
of the three reactions

ρ1 = ({1, 2}, {3}, {3}), ρ2 = ({1}, {3}, {1}), ρ3 = ({2}, {1}, {1, 2}).
Consider T = {1, 2}. Then enρ1(T ) and enρ2(T ), whereas enρ3(T ) does not hold.
Consequently,

resρ1(T ) = {3}, resρ2(T ) = {1}, resρ3 (T ) = φ, resA1(T ) = {1, 3}.
Definition 3 and our example exhibit an important feature of reaction systems.
Whenever an element is in a set, it is considered to be there always when needed.
Thus, the element 1 of T is not “consumed” in the application of the reaction
ρ1 but is also available for ρ2 when resA1 (T ) is computed. In this sense there is
no “conflict” between ρ1 and ρ2. This feature makes reaction systems different
from many other models, for instance, Petri nets.

For any A and T , the result resA(T ) is always a unique subset T ′ of S. If
resA(T ) = T ′, we use the notation

T ⇒A T ′,

or simply T ⇒ T ′ if A is understood. If

resA(Ti) = Ti+1, 0 ≤ i ≤ m− 1,

we write
T0 ⇒ T1 ⇒ . . .⇒ Tm
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and call T0, T1, . . . , Tm a sequence of length m generated (or defined) by the reac-
tion system A. Sometimes the sets Ti are referred to as states and the sequence
itself as a state sequence.

Since resA(T ) is uniquely determined by T , and since there are only 2�S

subsets of S, one of the following two alternatives always occurs, for large enough
m, for sequences

T0 ⇒ T1 ⇒ . . .⇒ Tm.

1. Tm = φ. Then we say that the sequence is a terminating sequence of length
m. In this case enρ(Tm−1) holds for no reaction ρ in A.

2. Tm = Tm1 , for some m1 < m. In this case we say that the sequence has (or
ends with) a cycle of length m−m1.

As another example, let A2 be a reaction system over the base set {1, 2, 3},
consisting of the four reactions

ρ1 = ({1}, {2}, {1}), ρ2 = ({1}, {3}, {2}),
ρ3 = ({2}, {3}, {3}), ρ4 = ({3}, {1}, {1, 3}).

We obtain now a cycle

{1} ⇒ {1, 2} ⇒ {2, 3} ⇒ {1, 3} ⇒ {1}
of length 4, as well as another cycle

{2} ⇒ {3} ⇒ {1, 3} ⇒ {1} ⇒ {1, 2} ⇒ {2, 3} ⇒ {1, 3},
also of length 4. In the latter case we also have an initial part of length 2. The
whole sequence contains all proper nonempty subsets of the base set. This shows
that {1, 2, 3} ⇒ φ is the only terminating sequence (starting with a nonempty
set).

Reaction systems are classified according to the maximal cardinalities of the
sets of reactants and inhibitors.

Definition 4. A reaction system A is a (k, l) system if the conditions �R ≤ k
and �I ≤ l are satisfied for every reaction (R, I, P ) in A.
The example A1 (resp. A2) considered above is a (2, 1) (resp. (1, 1)) system.

We will consider below in Section 3 interactive processes. This means that the
sequence of a reaction system is combined with an auxiliary sequence. In this
way most of the restrictions concerning sequences, resulting from the definitions
given above, are removed and the sequences may continue indefinitely.

Definition 5. Consider a reaction system A over the base set S, as well as an
auxiliary sequence

C : C0, C1, C2, . . . , Ci ⊆ S, i ≥ 0.

A sequence T0, T1, T2, . . . , of subsets of S is generated (or defined) by the inter-
active process (A, C) if

Ti+1 = resA(Ti ∪ Ci), for all i ≥ 0.
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We use the notation
T0 ⇒C0 T1 ⇒C1 T2 ⇒C2 . . .

We consider only finite prefixes of the auxiliary sequence C. If each of the sets
Ci is empty, we obtain a sequence of the reaction system A, as defined above. In
Definition 5 the sets Ci appear only in resA(Ti ∪ Ci). Definitions customary in
the literature consider sets Ti∪Ci. The difference is unessential but the notation
in Section 3 becomes more complicated if sets Ti ∪ Ci are used.

A brief outline of the contents of the main part of the paper follows. In Section
2 we introduce a special type of reactions, the maximally inhibited ones, and
show that they generate any prechosen sequence. In this case, the cardinalities
of the sets R and I are unbounded. The rest of the paper deals with (1, 1)
systems. Even then any sequence can be generated as a subsequence of a system
using a simple auxiliary sequence. This will be shown in Section 3, whereas
Section 4 improves the previously obtained lower bound for the maximal length
of sequences generated by (1, 1) systems without an auxiliary sequence.

2 Maximally Inhibited Reactions

In spite of the simplicity of the basic definitions, reaction systems can exhibit
quite complicated behavior. In particular, the terminating state sequences, as
well as the cycles, can be very long. This will be very clearly visible if one
considers maximally inhibited reactions and reaction systems.

Definition 6. A reaction over the base set S is maximally inhibited if it is of
the form (R,S − R,P ). A reaction system is maximally inhibited if every one
of its reactions is maximally inhibited.

A reaction being maximally inhibited imposes severe restrictions on states being
enabled. On the other hand, one may construct terminating state sequences, as
well as cycles, of maximal length. One may even have the states in any preas-
signed order.

We begin with an example. Consider the base set S = {1, 2, 3, 4}. We want to
construct a reaction system such that all nonempty subsets of S appear in its
terminating state sequence in the order

{1, 3, 4}, {2, 3}, {4}, {2, 3, 4}, {1, 2}, {1, 2, 4}, {3}, {1},
{1, 3}, {1, 2, 3}, {2, 4}, {3, 4}, {1, 4}, {2}, {1, 2, 3, 4}.

Observe that the whole set S can appear in a state sequence only at the end.
This follows from the fact that the set of inhibitors is, by definition, nonempty.
By the same reason, S can never appear in a cycle.

The reaction system defined below has the above sequence as its (terminating)
state sequence, provided {1, 3, 4} is the first state. The system is maximally
inhibited and consists of the following reactions:
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({1}, {2, 3, 4}, {1, 3}), ({2}, {1, 3, 4}, {1, 2, 3, 4}), ({3}, {1, 2, 4}, {1}),
({4}, {1, 2, 3}, {2, 3, 4}), ({1, 2}, {3, 4}, {1, 2, 4}), ({1, 3}, {2, 4}, {1, 2, 3}),

({1, 4}, {2, 3}, {2}), ({2, 3}, {1, 4}, {4}), ({2, 4}, {1, 3}, {3, 4}),
({3, 4}, {1, 2}, {1, 4}), ({1, 2, 3}, {4}, {2, 4}), ({1, 2, 4}, {3}, {3}),

({1, 3, 4}, {2}, {2, 3}), ({2, 3, 4}, {1}, {1, 2}).
At each state in the sequence, exactly one reaction is applicable. This is generally
true for maximally inhibited reaction systems.

Lemma 1. In a maximally inhibited reaction system, for any T ⊆ S, only re-
actions whose set of reactants equals T can be applied.

Proof. Any other possible reaction has at least one inhibitor contained in T . �

We now generalize the above example. Consider an arbitrary enumeration

T1, T2, . . . , T2n−1

of all nonempty subsets of the set S with n elements, ending with the set S itself.
Consider, further, the (maximally inhibited) reaction system with the base set
S and reactions

(Ti, S − Ti, Ti+1), 1 ≤ i ≤ 2n − 2.

Then, starting with T1, the reaction system generates the terminating sequence
given above. If we change the reaction (T2n−2, S− T2n−2, T2n−1) to the reaction
(T2n−2, S − T2n−2, T1), we get a cycle of length 2n − 2. Hence, we obtain the
following result.

Theorem 1. Given the base set S with n elements, there exists effectively a
reaction system with a terminating state sequence of length 2n − 1, as well as a
reaction system with a cycle of length 2n−2. Moreover, the reaction systems can
be constructed in such a way that the elements in the terminating state sequence
and cycle are in any preassigned order.

3 Power of Interaction: A Construction Using
Nondeterministic Automata

As we have seen, functional constructions based on reaction systems are easy if
the cardinalities of the sets R and I are not bounded. From now on we consider
(1, 1) reaction systems, that is, both of the sets are singletons. This case is very
natural from the point of view of combinatorics. In some sense it is also related
to context-free rewriting.

Now interaction provides a powerful tool. We will obtain below a result re-
sembling Theorem 1 for (1, 1) reaction systems, provided one of two specific
symbols is added to the state of the system at each step of the computation.
The constructions resemble the ones used for nondeterministic automata, [5,6].

Remark. In what follows, we apply the following notational simplification if
there is no danger of confusion. We identify elements with singleton sets and
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write x instead of {x}. We often deal with sets such as {2, 3, 5, 7}. If there is
no danger of confusion, we replace this notation by 2357. Thus, if we speak
of the reaction (1, 2, 235), this means ({1}, {2}, {2, 3, 5}) when the notational
simplification is not used.

As an example, consider the reaction system with the base set {1, 2, 3, 4, p, q}
and reactions

(1, p, 4), (2, p, 1), (3, p, 2), (4, p, 3),

(1, q, 13), (2, q, 2), (3, q, 4).

By interaction with a sequence consisting of p’s and q’s, we obtain the following
state sequence:

34⇒q 23⇒q 12⇒q 14⇒p 13⇒q 24⇒p 2⇒q 1⇒q 4

⇒q 3⇒q 2⇒q 1⇒p 13⇒p 134⇒q 234⇒q 123

⇒q 124⇒q 134⇒q 234⇒q 123⇒p 1234⇒{p,q} φ.

Observe that every subset of the set {1, 2, 3, 4} appears in this sequence. Some
appear seemingly with repetitions but in such cases the continuation of the
auxiliary sequence of p’s and q’s will be different. We now generalize this example,
using ideas from automata theory. Indeed, p and q can be viewed as input letters
of a nondeterministic finite automaton.

For n ≥ 4, we define a (1, 1) reaction system An as follows. The base set
consists of n+ 2 elements:

S = {1, 2, . . . , n, p, q}.

(The restriction n ≥ 4 is unessential. Our results hold also for smaller values
of n, with a slight modification in the construction. The details are left to the
reader. Also [6] can be consulted.) The set of reactions of An consists of the
following reactions:

(2, q, 1), (3, q, 2), (1, q, 3), (i, q, i), i > 3;

(n, p, 1), (n, p, 2), (i, p, i+ 1), 2 ≤ i ≤ n− 1.

We now consider interactive processes, where the auxiliary sequence is a sequence
of p’s and q’s. By states we mean subsets of the set S1 = {1, 2, . . . , n}. A state
Y is reachable from a state X , in symbols X ⇒∗ Y , if X ⇒p Y or X ⇒q Y ,
or else, Y is reachable from a set Z which is reachable from X . Moreover, X
is reachable from itself. We sometimes use also the self-explanatory notations
X ⇒∗

p Y or X ⇒∗
q Y .

It is immediate that from the empty set and the whole set S1 only the sets
themselves are reachable. We will see below that this is the only exception. For
this purpose, we will prove two lemmas.

Lemma 2. Every subset of S1 is reachable from the set {1}.
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Proof. Observe first the following reachability chain:

1⇒∗
p 2⇒q 3⇒q . . .⇒q n⇒q {1, 2} ⇒q 3⇒∗

p 1.

Also 1⇒q φ.
To prove the lemma, we assume inductively that every subset of S1 with

cardinality k−1, 2 ≤ k ≤ n, is reachable. Consider an arbitrary subset X of S1,

X = {x1, x2, . . . , xk}, x1 < x2 < . . . < xk,

with cardinality k. To show the reachability of X , we distinguish several cases.
Assume that x1 = 1, x2 = 2. Then the set X1 = {x3 − 1, . . . , xk − 1, n} is of

cardinality k − 1, and X1 ⇒q X.
Assume next that x1 = 1, x2 = 3. Then x3 ≥ 4 and the setX2 = {1, 2, x3, . . . , xk}

is reachable by the preceding paragraph. But X2 ⇒p X and, hence, X is reach-
able also in this case.

If x1 = 2, x2 = 3, the relation X2 ⇒∗
p X shows the reachability of X .

The following three possibilities remain.
Case A. x1 = 1, x2 ≥ 4.
Case B. x1 = 2, x2 ≥ 4.
Case C. x1 ≥ 3.

We now introduce a total order <ksub for subsets of S1 with cardinality k. Con-
sider two such subsets

Y = {y1, y2, . . . , yk}, Z = {z1, z2, . . . , zk},
where the elements are in increasing order. Then Y <ksub Z if yk− y1 < zk− z1,
or else

yk − y1 = zk − z1, y1 = z1, . . . , yj−1 = zj−1, yj < zj ,

for some j, 1 ≤ j ≤ k. (Thus, we first compare the differences between the
last and first elements and then, in case of equality between the differences,
compare the first elements different in the two sets.) We have shown that the
set {1, 2, 3, . . . , k}, the first in this order, is reachable.

Now another induction is applied. We assume inductively that all sets Y, Y <ksub
X, are reachable.

In Case A we choose Y1 = {2, x2, . . . , xk}. Then Y1 <ksub X because xk−2 <
xk − 1. On the other hand, Y1 ⇒p X.

In Case B we choose Y2 = {3, x2, . . . , xk}. Then Y2 <ksub X because xk− 3 <
xk − 2. Also now we get Y2 ⇒p X.

In Case C we choose Y3 = {x1 − 1, x2 − 1, . . . , xk − 1}. Then Y3 <ksub X
because x1 − 1 < x1. But Y3 ⇒q X.

Consequently, we have established the reachability of X in all cases and, thus,
completed the induction. �

The next lemma is a reverse of Lemma 2.

Lemma 3. The set {1} is reachable from every proper nonempty subset of S1.
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Proof. We apply again an inductive argument. By the reachability chain at the
beginning of the proof of Lemma 2, it suffices to show that, from any

X ⊆ S1, 2 ≤ �X = k ≤ n− 1,

a subset of S1 with cardinality k − 1 is reachable. We write X in the form

X = X1 ∪X2, X1 ⊆ {1, 2, 3}, X2 ⊆ {4, . . . , n}.
and distinguish several cases, depending on the cardinality of X1. The relation
⇒p does not affect the set X2, whereas it changes singletons in {1, 2, 3}, as well
as two-element subsets of {1, 2, 3} arbitrarily. Therefore, we may assume that,
whenever �X1 = 1 (resp. �X1 = 2), then X1 = {1} (resp. X1 = {1, 2}).

Case 1. �X1 = 3. Consequently, 0 ≤ �X2 < n − 3. If n is not in X2, then
an application of ⇒q gives a subset with cardinality k − 1. If n ∈ X2, then
X ⇒q X1 ∪ X1

2 , where X1
2 is obtained from X2 by removing n, adding 4, and

replacing the other elements x, 4 ≤ x < n, with x+ 1. Thus, the cardinalities of
X1 and X2 remain unchanged. Since �X2 < n − 3, by repeated applications of
⇒q we eventually reach a set not containing n, from which another application
of ⇒q produces a set of cardinality k − 1. The end result in this case is always

Y1 ∪ Y2, 1 = �Y1, Y1 ⊆ {1, 2, 3}, �X2 + 1 = �Y2, Y2 ⊆ {4, . . . , n}.
Case 2. X1 = {1, 2}. If �X2 = n− 3, then n ∈ X2, and an application of ⇒q

brings us back to Case 1. If �X2 < n− 3, we apply again ⇒q. If n is not in X2,
we reach the set {3} ∪X1

2 of cardinality k − 1. If n ∈ X2, we reach a set of the
same cardinality as X , and are back in Case 1.

Case 3. X1 = {1}. When we now apply ⇒q, we either get a set of cardinality
k − 1, or are back in Case 2.

Case 4. X1 = φ. In this case we first increase the cardinality, after which we
can decrease it twice. We know that 2 ≤ �X2 ≤ n−3. By successive applications
of ⇒q, we eventually reach the set

{1, 2} ∪X2
2 , �X

2
2 = �X2 − 1.

If n ∈ X2
2 , an application of⇒q yields the set {1, 2, 3}∪X3

2 , where �X3
2 = �X2−2.

We now reduce the cardinality to k, as in Case 1, after which a further reduction
takes place as in Case 3. (Recall the form of the end result in Case 1.) If n is
not in X2

2 , then an application of⇒q produces the set {3}∪X4
2 with cardinality

k, and after applying ⇒p, we are back in Case 3. Thus, we have completed the
induction in all cases. �

Since Case 4 is the trickiest, we still illustrate the procedure. We have n = 9 in
our example and start with the set {5, 6, 7, 8, 9}.

56789⇒q 126789⇒∗
q 123459

⇒q 123456⇒q 34567⇒∗
p 14567⇒q 5678
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Consider now interactive state sequences of the reaction system An, where the
auxiliary sequence is a sequence of p’s and q’s. By Lemmas 2 and 3, we now
obtain immediately the following result.

Theorem 2. Consider the reaction system An as defined above. Consider, fur-
ther, an arbitrary sequence Ti, 1 ≤ i ≤ 2n−2, of proper nonempty subsets of the
set S1. There is a terminating state sequence, as well as a cycle, of An, where
the sequence Ti appears as a subsequence.

Observe that the sequence Ti appears as a subsequence of the sequence of An.
The latter sequence contains “junk” not in Ti.

4 Long Terminating State Sequences and Cycles in (1, 1)
Reaction Systems

We will now discuss the basic variant, (1, 1) reaction systems without interaction.
It was shown in [2] that in this case there is a terminating state sequence of length
3 · 2k− 3, provided the base set is of cardinality 3k. Moreover, there is a cycle of
length 3 · 2k − 1, provided the base set is of cardinality 3k+ 3. We now improve
these results.

The results in [2] were obtained by recursion. Immediate improvements result
if the basis of recursion is changed. Indeed, the reaction system with the base
set {1, 2, 3} and reactions

(1, 2, 2), (2, 1, 3), (3, 2, 13)

has the terminating state sequence

1⇒ 2⇒ 3⇒ 13⇒ 123⇒ φ

of length 5. (This is to be contrasted with the length 3 used in [2].) On the other
hand, the following result was established in [2].

Lemma 4. Assume that a (1, 1) reaction system A has a terminating state se-
quence of length m ≥ 1. Adding three elements to the base set, one can construct
another (1, 1) reaction system having a terminating state sequence of length
2m + 3. Moreover, one can construct a further (1, 1) reaction system, again
adding three elements to the base set of A, with a cycle of length m+ 2.

Our example above shows that, for k = 1, there is a (1, 1) reaction system with
�S = 3k and with a terminating state sequence of length 5. According to Lemma
4, whenever there is a (1, 1) reaction system with �S = 3k and with a terminating
state sequence of length m, there is (effectively) a (1, 1) reaction system with
�S = 3(k+ 1) and with a terminating state sequence of length 2m+ 3. Thus, we
have a sequence of numbers uk, k = 1, 2, . . . , defined by the recursion

u1 = 5, uk+1 = 2uk + 3, k ≥ 1.
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Solving this linear recursion, [4], we get the values explicitly:

uk = 4 · 2k − 3, k ≥ 1.

Hence we obtain the following result, applying also the last sentence of
Lemma 4.

Theorem 3. For all k ≥ 1, there is a (1, 1) reaction system with the cardinality
of the state 3k and with a terminating state sequence of length 4 · 2k − 3, as well
as a (1, 1) reaction system with the cardinality of the state set 3k+ 3 and with a
cycle of length 4 · 2k − 1.

Exponentially better estimates for the lengths are obtained by considering the
recursion based on the following lemma.

Lemma 5. Assume that the base set S of a (1, 1) reaction system A is of car-
dinality n and that A has a terminating state sequence of length m ≥ 1. Then
there is another (1, 1) reaction system A1, with the base set of cardinality n+ 4
and with a terminating state sequence of length 3m+ 5.

Proof. Assume that the terminating state sequence of A is

Z0 ⇒ Z1 ⇒ . . .⇒ Zm−1 ⇒ Zm = φ.

The base set of the reaction system A1 is S ∪ {a, b, c, d}, where a, b, c, d are new
elements. The system A1 has all the reactions ofA and, in addition, the following
reactions:

ρ1i = (i, d, b), for all i ∈ S, ρ2i = (i, b, d), for all i ∈ S,
ρ3 = (b, c, a), ρ4 = (a, b, {Z0, b, c}), ρ5 = (b, a, c), ρ6 = (c, b, {Z0, d}).

We now claim that the state sequence starting with Z0 ∪ {a, b} terminates and
is of length 3m+ 5.

Indeed, the beginning of the sequence

Z0 ∪ {a, b} ⇒ Z1 ∪ {a, b} ⇒ . . .⇒ Zm−1 ∪ {a, b} ⇒ {a, b} ⇒ {a} ⇒ Z0 ∪ {b, c}

is of length m+ 2. The reaction ρ1i keeps b alive, and ρ3 keeps a alive. Neither
ρ2i nor ρ5 is applicable, whereas ρ4 is applicable only at the last step.

The continuation

Z0 ∪ {b, c} ⇒ Z1 ∪ {b, c} ⇒ . . .⇒ Zm−1 ∪ {b, c} ⇒ {b, c} ⇒ {c} ⇒ Z0 ∪ {d}

is also of length m + 2. Again ρ1i keeps b alive but now ρ5 keeps c alive. The
reaction ρ2i is still not applicable. Now ρ3 is not applicable, and ρ6 is applicable
at the last step only.

The final part of the sequence

Z0 ∪ {d} ⇒ Z1 ∪ {d} ⇒ . . .⇒ Zm−1 ∪ {d} ⇒ {d} ⇒ φ
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is of length m+1, whence the total length of the terminating sequence is 3m+5.
Now ρ2i keeps d alive, whereas ρ1i is not applicable. �

Consider now the (1, 1) reaction system with the base set {1, 2, 3, 4} and reactions

(1, 3, 2), (2, 3, 3), (3, 1, 4), (4, 3, 14).

We obtain the terminating state sequence

1⇒ 2⇒ 3⇒ 4⇒ 14⇒ 124⇒ 1234⇒ φ

of length 7.
Thus, for k = 1, there is a (1, 1) reaction system with �S = 4k and with a

terminating state sequence of length 7. According to Lemma 5, whenever there
is a (1, 1) reaction system with �S = 4k and with a terminating state sequence
of length m, there is (effectively) a (1, 1) reaction system with �S = 4(k + 1)
and with a terminating state sequence of length 3m + 5. Thus, we now have a
sequence of numbers vk, k = 1, 2, . . . , defined by the recursion

v1 = 7, vk+1 = 3vk + 5, k ≥ 1.

This gives us the solution

v1 = 7, v2 = 26, vk = 3 · 3k + 9(3k−3 − 1)/2 + 2, k ≥ 3.

Hence, we have established the following result.

Theorem 4. For every k ≥ 1, there is a (1, 1) reaction system having 4k ele-
ments in the base set and having a terminating state sequence of length vk.

Applying the last sentence of Lemma 4, we obtain the further result.

Theorem 5. For every k ≥ 1, there is a (1, 1) reaction system having 4k + 3
elements in the base set and having a cycle of length vk + 2.

It is unlikely that one is able to get even close to the optimal length 2�S of
terminating sequences or cycles. However, better methods might yield essentially
better estimates than the ones so far obtained.

5 Conclusion

We have considered in this paper certain formal combinatorial properties of
reaction systems, focusing on the basic variant of the systems. The amazing
diversified applicability of reaction systems has made it necessary to introduce
many modifications of the basic variant. However, the basic variant itself is
worth of further study, especially because there still remain interesting open
problems and problem areas. We have seen that the interactive processes with
unlimited auxiliary sequences yield “everything”. An open problem is to study
cases where the auxiliary sequences are somehow limited, for instance, periodic.
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Reaction systems can also be used as generators of formal languages, although
no significant results in this direction exist so far.

Theoretically most interesting problems concern (1, 1) reaction systems, in
particular, the characterization of their sequences. Denote by μ(n) the maximal
length of a terminating sequence generated by a reaction system with �S = n.
An interesting combinatorial problem is to investigate the function μ(n) and find
good bounds for it.
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On Distance Coloring

A Review Based on Work with Dexter Kozen

Alexa Sharp

Oberlin College, Oberlin, OH

Abstract. An undirected graph G = (V,E) is (d, k)-colorable if there is
a vertex coloring using at most k colors such that no two vertices within
distance d have the same color. It is well known that (1, 2)-colorability is
decidable in linear time, and that (1, k)-colorability is NP -complete for
k ≥ 3. This paper presents the complexity of (d, k)-coloring for general
d and k, and enumerates some interesting properties of (d, k)-colorable
graphs. The main result is the dichotomy between polynomial and NP -
hard instances: for fixed d ≥ 2, the distance coloring problem is poly-
nomial time for k ≤ � 3d

2
� and NP-hard for k > � 3d

2
�. We present a

reduction in the latter case, as well as an algorithm in the former. The
algorithm entails several innovations that may be of independent inter-
est: a generalization of tree decompositions to overlay graphs other than
trees; a general construction that obtains such decompositions from cer-
tain classes of edge partitions; and the use of homology to analyze the
cycle structure of colorable graphs. This paper is both a combining and
reworking of the papers of Sharp and Kozen [14,10].

1 Introduction

Given a connected undirected graph G = (V, E), the classic k-coloring prob-
lem assigns a color from 1 to k to each vertex in a graph such that no two
adjacent vertices share the same color [6]. The k-coloring problem, along with
many variations and generalizations, is well-studied in both computer science
and mathematics [2,4,1,15,3]. Its applications range from frequency assignment
[5] to circuit board testing [7], among others.

The distance (d, k)-coloring problem is a generalization of k-coloring that
again assigns a color from 1 to k to each vertex, but such that no two vertices
within distance d of each other share the same color. Clearly, k-coloring is a
special case of (d, k)-coloring with d = 1. It is well known that (1, k)-coloring
is NP -complete for k ≥ 3 [6] and solvable in linear time for k ≤ 2: a graph
is (1, 2)-colorable if and only if it has no odd cycles and (1, 1)-colorable if and
only if it has no edges. Furthermore, (d, k)-coloring a graph G is equivalent to
k-coloring Gd, the dth power graph of G. (The graph Gd has the same vertex set
as G and an edge between two vertices if and only if they are within distance d
of each other in G.) In this way (d, k)-coloring is no harder than (1, k)-coloring.

These results still leave room for questions, however; specifically, for which val-
ues of d and k can (d, k)-coloring be solved in polynomial-time? The dichotomy

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 283–297, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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between polynomial and NP-hard instances is the subject of this paper: the
main result is a sharp boundary that classifies the complexity of all instances
of (d, k)-coloring for d ≥ 2: determining whether a graph is (d, k)-colorable is
polynomial-time for k ≤ � 3d

2 �, but NP-hard for k > � 3d
2 �.

The algorithm for k ≤ �3d/2� uses known algorithms for coloring graphs
of bounded treewidth [13]. Since the complexity depends so drastically on the
treewidth, we want to obtain a bound on treewidth that is as small as possible.

To this end, we describe a construction that achieves treewidth ≤ 2d. However,
the main interest is not the bound itself, but rather the analysis, which reveals
a clear picture of the structure of colorable graphs. The construction entails
several technical contributions that may be of independent interest:

(i) A generalization of tree decompositions [13] to allow arbitrary overlay graphs,
not just trees. In particular, we show that (d, k)-colorable graphs for k ≤
�3d/2� have a cycle decomposition of width d.

(ii) A general construction to obtain such decompositions from certain classes of
edge partitions. An example of one such partition is the set of biconnected
components of an undirected graph, which gives a tree decomposition.

(iii) The use of homology to analyze the cycle structure of colorable graphs. We
show that for k ≤ �3d/2�, (d, k)-colorable graphs contain at most one “long”
cycle modulo “short” cycles.

� � � � �
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Fig. 1.

On the other side, the reduction and accompanying analysis shed
light on a particular source of NP -hardness in graph problems,
namely, the ability to propagate information nonlinearly in the
graph. This is a somewhat elusive notion, but intuitively we
mean that it must be possible to duplicate information so that
it can be transferred to an unbounded number of other locations
in the graph. Recall that typical NP -hardness proofs in graphs
involve the construction of certain “gadgets” that can propagate
information in the graph in a controlled way. These gadgets can be quite intri-
cate. For example, to show that planar 3-colorability is NP -complete [6], one
can use the crossover gadget shown in Fig. 1. This gadget has the properties (i)
it is planar, (ii) any legal 3-coloring must color the opposite corners the same,
and (iii) every 3-coloring of the corners with opposite corners the same extends
to a legal 3-coloring of the whole gadget. Thus, by replacing edge crossings with
the gadget, 3-colorability of arbitrary graphs can be reduced to 3-colorability
of planar graphs. We can think of the gadget in Fig. 1 as propagating coloring
information between the east and west corners and simultaneously between the
north and south corners.

However, to establish NP -hardness, it is not enough just to be able to propa-
gate information in the graph; it must also be possible to duplicate information
so that it can be propagated nonlinearly; that is, it must be possible to transfer
the same information to an unbounded number of other locations in the graph.
Here we are using the term linear in the same sense as linear logic [8]. In lin-
ear logic, assertions may not be freely duplicated, and every assertion that is
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produced must be consumed. Thus the proof rules of linear logic do not allow
cost-free nonlinear propagation of information.

This phenomenon arises often in combinatorial problems. For example, two-
dimensionalmatching is tractable, but three-dimensionalmatching isNP -complete
[6]. The standard gadget used to proveNP -hardness of the latter from3CNFclearly
illustrates the ability to create and propagate information unboundedly.

For another example, in the Boolean satisfiability problem, information is
propagated by the constraint that all occurrences of a variable must have the
same truth value. The general 3CNF satisfiability problem is NP -complete, but
the problem is efficiently solvable under the restriction that each variable occur
at most twice, or that each clause contain at most 2 variables. Intuitively, these
restrictions prevent the nonlinear propagation of information. Allowing three
or more occurrences is tantamount to an unbounded number of occurrences by
introducing new variables.
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Fig. 2.

Likewise, in the distance-d coloring problem, allowing more
than �3d/2� colors essentially enables the nonlinear propagation
of information. A paradigmatic example is the graph illustrated
in Fig. 2 with d = 6. This graph is (6, 10)-colorable, and any legal
coloring imposes certain constraints on the colors of any node
connected to one of the three terminal nodes. In the (6, 10)-
coloring problem, and in fact for all (d, k)-coloring problems for
d ≥ 2 and k > �3d/2�, we can build gadgets based on this idea, and these
gadgets can be composed to propagate coloring constraints nonlinearly, and these
problems are NP -complete. (See Section 2.)

On the other hand, the graph of Fig. 2 is not (6, 9)-colorable, so it cannot ap-
pear as a subgraph of any (6, 9)-colorable graph. This severely restricts the form
of (6, 9)-colorable graphs, and similarly of (d, k)-colorable graphs for k ≤ �3d/2�,
to the extent that they are efficiently recognizable and efficiently colorable.

This paper is organized as follows. Section 2 describes the reduction of [14].
The rest of the paper is based on [10]: Section 3 describes a generalization of
tree decompositions and explains how to obtain such decompositions from a
certain class of edge partitions, of which biconnected components are a special
case. Section 4 shows that for k ≤ �3d/2�, (d, k)-colorable graphs have a tree
decomposition of width at most 2d that we find efficiently. The homology of
colorable graphs is treated in Section 5.

2 NP-Hardness

We know that (1, k)-coloring is NP-hard for k ≥ 3 [6]; this section shows that
for d ≥ 2, (d, k)-coloring is NP-hard for k > � 3d

2 � [14].

Theorem 1. The (d, k)-coloring problem is NP-hard for d ≥ 2, k > � 3d
2 �.

Theorem 1 follows via a reduction from k-coloring. Given an instance (G, k) of
k-coloring, we construct a graph G′ such that G is k-colorable if and only if
G′ is (d, k)-colorable. The building block of this reduction is a triangle gadget
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GΔ, shown in Figure 3 for odd and even d. The gadget is such that GΔ is
(d, k)-colorable if and only if x, y and z have the same color.
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Fig. 3.

We define G′ = (V ′, E′) as follows.
For each vertex u ∈ V , create gadget
Gu ⊆ G′ by concatenating deg(u) · 2k4

copies of GΔ, overlapping the x and
y vertices, leaving the z vertices open.
Every 2k4th z vertex is reserved for use
as follows: for each edge e = (u, v) ∈ G,
create an edge (ue, ve) ∈ G′ where ue

and ve are reserved z vertices of Gu

and Gv, respectively; an example of
this reduction is shown in Fig. 4. Note that G′ is polysize, as |GΔ| = k + 2
and it is copied

∑
u∈V deg(u) · 2k4 times.
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Fig. 4.

Note that if G′ is (d, k)-colorable, then ue, uf ∈ G′ have the same color for
all edges e, f incident to u ∈ G, and for edge e = (u, v) ∈ G, ue, ve ∈ G′ are
different colors. Together these imply that G is k-colorable.

To finish the reduction, it remains to argue that every k-coloring in G cor-
responds to a (d, k)-coloring in G′. This direction is less straightforward; the
reader is referred to [14] for the details.

3 Decompositions and Forbidden Subgraphs

This section introduces a generalization of tree decompositions [13] such that
the “overlay graph” is not restricted to a tree.

Let i, j, k be vertices of an undirected graph G = (V, E). The set [i, k ] is the
set of all vertices lying on all shortest paths from i to k, inclusive, in G. The set
[i, k ] is called an interval. We say that j is between i and k if j ∈ [i, k ].

Definition 1. A decomposition of G is a triple (W, F, X) consisting of an undi-
rected overlay graph (W, F ) and a map X : W → 2V associating a subset
Xi ⊆ V with each i ∈ W satisfying the following properties.

(i) The Xi cover V ; that is, V =
⋃

i∈W Xi.
(ii) For all edges (u, v) ∈ E, there exists i ∈ W such that u, v ∈ Xi.
(iii) If j is between i and k in (W, F ), then Xi ∩ Xk ⊆ Xj.

The width of (W, F, X) is maxi |Xi| − 1.
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A tree decomposition is just a decomposition in which the overlay graph (W, F )
is an undirected tree. We also consider cycle decompositions and line decomposi-
tions in which the overlay graphs are undirected cycles and paths, respectively.

3.1 Decompositions from Edge Partitions

Section 4 uses the following decomposition, formed by an edge partition whose
partition elements share at most one vertex (called an articulation point):

Lemma 1. If P ⊆ 2E is an edge partition of G = (V, E) such that |V (A) ∩
V (B)| ≤ 1 for all A, B ∈ P , then (W, F, X) is a decomposition of G, where

W = P ∪ {u | V (A) ∩ V (B) = {u} for some A, B ∈ P}
F = {(u, A) | u ∈ V (A)}

XA = V (A)
Xu = {u}.

Proof. Properties (i) and (ii) follow from the fact that G is connected and P is
an edge partition. For (iii), Xu and Xv cannot intersect for u �= v. If Xu and XA

intersect, then (u, A) ∈ F , and there is no other vertex of (W, F ) between u and
A, therefore (iii) holds vacuously. Finally, if XA and XB intersect for A �= B, then
by our premise, XA ∩ XB = {u} for some vertex u, thus [A, B ] = {A, u, B},
and XA ∩ XB = {u} = Xu.

Example 1. One such decomposition is given by the biconnected components of
G and their articulation points [9]. The biconnected components are the equiva-
lence classes of edges defined by the equivalence relation: e ∼ e′ if e and e′ lie on
a common simple cycle. In this case, the decomposition provided by Lemma 1 is
a tree decomposition of G, and its width is the maximum size of a biconnected
component minus 1. We generalize this construction in Section 4.2.

3.2 Forbidden Subgraphs

For a subgraph G′ ⊆ G, the diameter of G′, denoted diamG′, is the maximum
shortest path distance between any two vertices of G′. A forbidden subgraph is
a subgraph G′ = (V ′, E′) such that diamG′ ≤ min{d, |V ′| − (k − d) − 1}.
Theorem 2. If G = (V, E) is (d, k)-colorable and |V | ≥ k + 1, then G cannot
contain a forbidden subgraph.

Proof. Given a forbidden subgraph G′, let G′′ be a connected graph induced by
V ′ and max{0, k + 1 − |V ′|} vertices of V \ V ′; G′′ has ≥ k + 1 vertices and
diameter at most d, which precludes a (d, k)-coloring.

Example 2. One such forbidden subgraph for any k ≤ � 3d
2 � is a central vertex

connected to two paths of length �d/2� and one path of length d/2� (as in
Fig. 2). This subgraph occurs when there is a cycle of length ≥ d + 1 with an
offshoot of length ≥ �d/2�.
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4 Algorithm

Let k, d ≥ 2 be fixed constants, k ≤ �3d/2�. This section describes an algorithm
that either declares G not (d, k)-colorable, or constructs a constant-width tree,
line, or cycle decomposition of G, which is then transformed into a tree decom-
position. We can then apply known algorithms for coloring graphs of bounded
treewidth [11,12] to either produce a coloring of G or declare that no such col-
oring exists. The algorithm is linear in the size of G for fixed d. The algorithm
proceeds in several steps, which we treat in the indicated subsections.

§4.1 We find the biconnected components of G. If all such components have diam-
eter ≤ d then we either determine that G is not (d, k)-colorable, or produce
a tree decomposition of width k ≤ �3d/2�.

§4.2 Otherwise G contains exactly one biconnected component G′ of diameter
≥ d + 1, for which we construct a cycle decomposition by defining an edge
partition then using Lemma 1.

§4.3 We use this cycle decomposition of G′ to find a cycle decomposition of G of
width at most k − �d/2� ≤ d.

§4.4 Finally, we construct a line decomposition of width 2d from our cycle de-
composition of width d by collapsing the two strands of the cycle.

Any one of these steps may fail if G is not colorable, but this will occur in a
recognizable way.

4.1 Biconnected Components

In linear time we find the biconnected components of G [9]. There are 3 cases:

(i) All such components have diameter ≤ 3d/4. If at least one component con-
tains > k vertices, then G is not (d, k)-colorable. Otherwise, these bicon-
nected components and their articulation points provide a tree decomposi-
tion of G of width at most k ≤ �3d/2�, as in Example 1.

(ii) There is a biconnected component G′ of diameter ≤ d (but > 3d/4). Then
G′ (hence G) is not (d, k)-colorable, since there is a simple cycle of length
greater than �3d/2� ≥ k in a set of diameter ≤ d.

(iii) There is a biconnected component G′ of diameter ≥ d + 1. Then there can
be only one (otherwise we could construct a forbidden subgraph out of these
components and their connection points, as in Example 2). The following
section produces a cycle decomposition in this case.

4.2 A Cycle Decomposition

� �

�

�

�

�

� �

��

Fig. 5.

Suppose we have one biconnected component G′ of diame-
ter at least d + 1. This implies the existence of a “shortest”
simple cycle T (the trunk) in G′ of length at least 2d + 2.
We show how to find a cycle decomposition of G′ of small
width, provided G′ is colorable. The picture to keep in mind
is Fig. 5, which represents G′, its smaller biconnected com-
ponents and their “local” articulation points.
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First we construct a suitable edge partition consisting of the equivalence
classes of a certain equivalence relation d∼. This partition is very much like that
of Example 1, except that we impose a bound of d on the length of cycles. The
following technical lemma is needed for transitivity.

Lemma 2. If G′ is (d, k)-colorable, then G′ has no simple cycle of length � for
any d + 1 ≤ � ≤ 2d + 1.

Proof. By way of contradiction, suppose G′ contains a simple cycle L of length �,
d+1 ≤ � ≤ 2d+1. Then L contains � vertices within distance diamL = ��/2� ≤ d.
Note, therefore, that � ≤ k ≤ �3d/2�.

Note that if T and L are disjoint, then since G′ is connected, T and L would
be connected by an isthmus, and we could construct a forbidden subgraph as in
Example 2. Thus T and L have a node in common.

Let Q1, Q2, . . . , Qm be the maximal (contiguous) segments of T \L. There are
2c nodes on Qi of distance c from L, for c ≤ �|Qi|/2�. Consider the set P ⊆ T \L
of the �d/2� closest vertices to L. Then if qi = |P ∩Qi|, then q1 + q2 + · · ·+ qm =
�d/2�; moreover, the distance from any xi ∈ P ∩ Qi to any xj ∈ P ∩ Qj is at
most d(xi, L) + ��/2�+ d(xj , L) ≤ qi/2 + �3d/4�+ qj/2 ≤ d/4 + 3d/4 ≤ d. Thus
there are � + �d/2� ≥ k + 1 vertices within distance d, a contradiction.

For edges e, e′ in G′, define e
d∼ e′ if e and e′ lie on a simple cycle of length

at most d. This definition is identical to the definition of the edge partition for
biconnected components except for the length restriction.

Lemma 3. If G′ is colorable, then the relation d∼ is an equivalence relation and
no two d∼-equivalence classes have more than one edge endpoint in common.

Proof. Reflexivity follows from the fact that any edge and its two endpoints
constitute a simple cycle. The relation is symmetric, since e and e′ can be in-
terchanged in the definition of d∼. For transitivity, suppose (u, v) d∼ (u′, v′) and
(u′, v′) d∼ (u′′, v′′), due to cycles C and C′, respectively, both of length ≤ d. Then
we can certainly construct a simple cycle D of length ≤ 2d from C and C′ that
contains (u, v) and (u′′, v′′); by Lemma 2, this cycle in fact has length ≤ d.

Lastly, suppose that C and C′ are two equivalence classes, and u �= v are
elements of V (C) ∩ V (C′). Then u and v are at most distance d/2 in C and in
C′. Combining shortest paths in C and C′ between u and v yields a simple cycle
of length at most d with edges from both C and C ′, thus C = C′.

Lemma 3 allows us to apply the theory of Section 3. Thus the d∼-equivalence
classes give a decomposition of G′ of width at most k. Later, in Section 4.3, we
will improve the width bound. First we show that the overlay graph is a cycle.

To do this, we need to identify local articulation points on T , that is, vertices
v such that G′ \ v is not biconnected. A chord with endpoints s, t ∈ T is a path
between s and t, none of whose intermediate nodes lie on T . A node u ∈ T
is subtended by a chord if it lies strictly between the chord’s endpoints on the
shortest path between them. No local articulation point is subtended by a chord.
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Lemma 4. If G′ is (d, k)-colorable then there are at least 4 local articulation
points on T .

Proof. If a node x on T is subtended by a chord, then the two edges on T adjacent
to x are d∼-equivalent by Lemma 2, because the chord forms a cycle with some
portion of T . If every node of T were subtended by a chord, then by transitivity,
all edges of T would be d∼-equivalent, a contradiction to diamG′ ≥ d + 1. Thus
there exists some node x not subtended by any chord, the first articulation point.

Similarly, there is an articulation point y within distance �d/2� of x on T ,
otherwise the shortest path between them in the biconnected component would
be shorter than the path on T (a contradiction to T being “shortest”). Since
|T | ≥ 2d + 2, there are at least four articulation points total.

Lemma 5. If G′ is (d, k)-colorable, then G′ consists of a cycle of biconnected
subgraphs, each of diameter at most �d/2�. Each biconnected subgraph is con-
nected to its two neighbors on the cycle by a local articulation point. We can find
the decomposition in linear time.

Proof. The existence is clear from Lemma 4. To find the decomposition, we
identify the local articulation points. This can be done in linear time: performing
a breadth-first search from a vertex s down to a depth of �d/2� can confirm
whether s is a local articulation point by whether it is subtended by a chord;
since every set of size �d/2� must contain a point of T , and there is a local
articulation point no more than �d/2� from any node of T , the first articulation
point s is easily found. We break the graph at s, forming two copies of s, then
find the biconnected components of the resulting graph.

4.3 Bounding Cycle Width

Section 4.2 constructs an edge partition P of G′ that forms a cycle decomposition;
this section augments P to a cycle decomposition of G of width at most k−d/2 ≥
0 (if k < d/2 then no connected subgraph of d/2 vertices is colorable.)

Consider any element A ∈ P (each a biconnected subgraph of diameter at
most d/2) and its 2 articulation points on T that surround it. Let TA be the
interval of T (of length ≤ d/2) that contains the 2 articulation points of A and
let NA be all the nodes of G connected to TA through only nodes in G\T . In this
way, TA and NA are connected, no edges go between NA and T \ TA (because
TA contains the articulation points of A and G′ is maximally biconnected), and
all nodes and edges of G are contained within some subgraph NA ∪ TA for some
A ∈ P . The goal of this section is to show that the {NA ∪ TA : A ∈ P} and the
corresponding articulation points form a cycle decomposition of G of width at
most k − d/2. Properties (i), (ii) and (iii) hold given the previous observations.
The width follows from the following lemma.

Lemma 6. If G is (d, k)-colorable, then |NA ∪ TA| ≤ k − d/2.
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Proof. Notice that |NA ∪TA| = |NA|+ |TA| ≤ |NA|+ d/2 + 1, which means that
we only need to show that |NA| ≤ k − d − 1 in order to finish the proof.

The idea is to add a carefully chosen d + 1 vertices to NA such that the
diameter of the resulting subgraph is still ≤ d; thus, the subgraph contains ≤ k
vertices, and NA at most k − d − 1 vertices. To choose these d + 1 vertices, we
identify a “central” vertex z ∈ TA such that all u ∈ NA are of distance at most
�d/2� from z; thus the vertices of NA along with the path of length d centered
on z will be a subgraph of diameter d containing d + 1 + |NA| vertices.

Thus it remains to find a z ∈ TA such that d(z, u) ≤ �d/2� for each u ∈ NA.
To this end, let P be a simple “U-shaped” path in NA ∪ TA from some x ∈ NA

to a tx ∈ TA to some ty ∈ TA to some y ∈ NA. Without loss of generality, let tx
be to the left of ty on TA. Then if the dP (x, y) = d, the subgraph containing P ,
the dP (x, tx) vertices of T to the left of tx and dP (y, ty) vertices to the right of
ty form a subgraph of diameter d containing 2|P |−dTA(tx, ty)+1 vertices. Since
dTA(tx, ty) ≤ �d/2�, this subgraph contains at least 3d/2�+ 1 ≥ k + 1 vertices
within diameter d, which is not possible in a (d, k)-colorable graph. Thus, if G
is (d, k)-colorable then all such “U-shaped” paths have length at most d − 1.

For each vertex x ∈ NA, let hx denote the length of the longest simple path
from x to some tx ∈ TA, and let dx denote the distance from tx to the midpoint
of TA. Note that hx ≤ �d/2� for all x ∈ NA otherwise we would have a forbidden
subgraph. Let w = argmaxx∈NA{hx − (�d/2�−dx)}. If all hx − (�d/2�−dx) < 0
then the midpoint of TA works as our z. For hw − (�d/2� − dw) ≥ 0, without
loss of generality, suppose that tw is on the left half of TA. Let z ∈ TA be the
vertex that is hw − (�d/2� − dw) to the left of the midpoint of TA. Then note
that the longest simple path from w to z is dw − dz + hw = �d/2�. Now any
vertex u to the right of z defines a U-shaped path between w and u of length
hw + dw − dz + du + dz + hu = �d/2� + du + dz + hu; since this U-shaped path
has length at most d−1, we have that the distance from u to z is at most �d/2�.
Any vertex u to the left of z is such that hu + du ≤ hw + dw by our choice of w;
thus du + hu − dz ≤ dw + hw − dz = �d/2�. Therefore, every vertex u ∈ NA is
of distance at most �d/2� from z, and therefore NA ∪ TA has diameter at most
d. If we add d + 1 nodes on T centered on z, we have a subgraph of diameter d
with |NA| + d + 1 nodes, as desired.

4.4 Converting Cycles to Lines

Section 4.3 shows that G has a cycle decomposition of width at most k − d/2.
The main algorithmic result is now immediate from the following lemma.

Lemma 7. If G has a cycle decomposition of width w, then G has a line de-
composition of width at most 2w.

Proof. Intuitively, we grasp the cycle by diametrically opposed nodes and pull,
creating a line with two strands.
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Formally, let (C, F, X) be a cycle decomposition of G = (V, E) of width w
such that (C, F ) on the vertices 0, 1, 2, . . . , m, in this order. Consider

L = {0, 1, 2, . . . , �m/2�},
D = {(i, i + 1) | 0 ≤ i ≤ �m/2� − 1},
Yi = Xi ∪ Xm−i.

We wish to show that (L, D, Y ) is a line decomposition of G of width at most
2w. Properties (i) and (ii) of line decompositions hold trivially, and it is clearly
of width at most 2w. It remains to show property (iii); that is, for 0 ≤ i < j <
k ≤ �m/2� that Yi ∩ Yk ⊆ Yj , or

(Xi ∪ Xm−i) ∩ (Xk ∪ Xm−k) ⊆ Xj ∪ Xm−j .

By distributivity this reduces to the following four inclusions:

Xi ∩ Xk ⊆ Xj ∪ Xm−j (1)
Xi ∩ Xm−k ⊆ Xj ∪ Xm−j (2)
Xm−i ∩ Xk ⊆ Xj ∪ Xm−j (3)

Xm−i ∩ Xm−k ⊆ Xj ∪ Xm−j . (4)

These inclusions hold by virtue of the fact that (C, F, X) is a cycle decomposition.
Properties (1) and (4) are immediate, since j ∈ [i, k ] and m−j ∈ [m− i, m−k ].
For (2) and (3), there are two cases, depending on whether

(m − k) − i mod m + 1 ≤ �(m + 1)/2� or
i − (m − k) mod m + 1 ≤ �(m + 1)/2�.

In the former case, k ∈ [i, m−k ], therefore j ∈ [i, m−k ] and m−j ∈ [m− i, k ].
These imply that Xi ∩ Xm−k ⊆ Xj and Xm−i ∩ Xk ⊆ Xm−j .

In the latter case, we have k − (m − i) mod m + 1 ≤ �(m + 1)/2�. Then
i ∈ [m− i, k ], therefore j ∈ [m− i, k ] and m− j ∈ [i, m− k ]. These imply that
Xm−i ∩ Xk ⊆ Xj and Xi ∩ Xm−k ⊆ Xm−j .

Theorem 3. If G is (d, k) colorable for k ≤ �3d/2�, then G has a line decom-
position of width at most 2k − d ≤ 2d.

5 Homology of Colorable Graphs

Colorability has deeper implications regarding the cycle structure of a graph
that are best expressed in terms of homology. The main observation is Theorem
4, which is a formal statement of the intuitive idea that all long simple cycles
in the graph are equivalent modulo short cycles; in other words, modulo short
cycles, there is at most one long simple cycle in the graph. The formal statement
requires some number of definitions.
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A free abelian group H on a finite set of generators X is the set of formal sums∑
e∈X kee, where ke ∈ Z are integer coefficients. This also forms a Z-module of

dimension |X | with standard basis X . We have a natural inner product defined
by e • e′ = 1 if e = e′ and 0 if e �= e′ for basis elements e, e′ ∈ X , extended
uniquely to H2 → Z by bilinearity. For a basis element e ∈ X , the projection
x �→ e • x gives the coefficient of e in the expression x.

For a connected undirected graph G = (V, E), let E be the set of directed
edges of G, consisting of two directed edges uv and vu for each undirected edge
{u, v} ∈ E. Let Δ be the set of oriented simple cycles, where 〈u1u2 · · ·un 〉 is the
oriented cycle through u1, u2, . . . , un in that order. If e is a directed or undirected
edge with endpoints u, v, let 〈e〉 = 〈uv 〉 ∈ Δ be the cycle of length 2 consisting
of the two directed edges uv and vu. An element of Δ is short if its length is
at most 2d + 1, otherwise it is long. Let Δd be the set of short oriented simple
cycles. Let H0, H1, and H2 be the free abelian groups on generators V , E, and
Δ, respectively. Let Hd

2 be the subgroup of H2 generated by Δd.
For an object α in Δ or E, let α denote the object with the opposite orienta-

tion. For example, if α is the oriented simple cycle 〈uvw 〉, then α = 〈wvu〉, and
if e is the directed edge uv, then e = vu. The maps : Δ → Δ and : E → E
extend by linearity to group homomorphisms : H2 → H2 and : H1 → H1,
respectively.

Let ∂1 : H2 → H1 and ∂0 : H1 → H0 be the boundary homomorphisms defined
as follows. For an oriented simple cycle α, ∂1(α) is the sum of the directed edges
in α, and for a directed edge uv, ∂0(uv) = v−u. For example, if α is the oriented
simple cycle 〈uvw 〉, then ∂1(α) = uv + vw +wu. For e ∈ E, ∂1(〈e〉) = e+ e and
〈e〉 = 〈e〉.

The cycle group C ⊆ H1 is the kernel of ∂0, which is the same as the image
of H2 under ∂1 (Lemma 8(i)). Let Cd be the image of Hd

2 under ∂1. The group
Cd is the subgroup of the cycle group generated by (the directed edges of) the
short oriented simple cycles.

Let Pi be the positive orthant of Hi, 0 ≤ i ≤ 2; this is the set of expressions
with only nonnegative coefficients. The set Pi induces a partial order ≤ on Hi

defined by: α ≤ β iff β − α ∈ Pi. An element is positive if it is contained in Pi.

Lemma 8. For P1, P2, H2, C and ∂1 defined above,

(i) ∂1(H2) = C.
(ii) ∂1(P2) = P1 ∩ C.

Proof. For the forward inclusion of (i), a standard argument shows the image
∂1(H2) is contained in C = ker ∂0; that is, ∂0◦∂1 = 0. For example, if α = 〈uvw 〉,
then ∂0(∂1(α)) = ∂0(uv + vw + wu) = (v − u) + (w − v) + (u − w) = 0.

The forward inclusion of (ii) follows from the observation that the image of a
positive element under ∂1 is positive in H1.

For the reverse inclusion, we prove (ii) first. This argument is similar to the
proof of Euler’s theorem that a cycle in an undirected graph can be written
as a union of simple cycles. For x ∈ P1 and v ∈ V , define the indegree and
outdegree of v in x to be the sum of the coefficients in x of all edges entering
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v and exiting v, respectively. Observe that for positive x, membership in ker ∂0

is equivalent to the condition that the indegree of every vertex is equal to its
outdegree; equivalently, v • ∂0(x) = 0 for all v.

Let x ∈ P1 ∩ ker ∂0. Start at any node of nonzero outdegree, and trace a
cycle α1, following edges with positive coefficients in x until you encounter a
node twice. It is always possible to continue, since the outdegree of any node
equals the indegree. Subtract off the edges of α1 between the repeat; the resulting
expression x−∂1(α1) is still in P1 ∩ ker ∂0. Continue in this way to get α2, α3, . . .,
until the resulting expression is 0. Let α =

∑
i αi. Then x = ∂1(α) and α ∈ P2.

For (i), let x ∈ ker ∂0. Let γ ∈ P2 be a positive sum of length-2 cycles 〈e〉 with
coefficients just large enough that x+∂1(γ) ∈ P1. Then x+∂1(γ) ∈ P1 ∩ ker ∂0.
By (ii), there exists α ∈ P2 such that ∂1(α) = x + ∂1(γ). Then ∂1(α − γ) = x.
(For example, the element uv + vw − uw ∈ ker ∂0 is ∂1(〈uvw 〉 − 〈uw 〉).)
Theorem 4. Suppose G is (d, �3d/2�)-colorable for some d ≥ 2. Then either

(i) all simple cycles of G are short, in which case Cd = C and the quotient
group C/Cd is trivial; or

(ii) G contains a long simple cycle, in which case the quotient group C/Cd is
isomorphic to Z.

Proof. Case (i) is immediate from Lemma 8(i). If all simple cycles are short,
then H2 = Hd

2 , in which case C = Cd.
Case (ii) assumes that G contains an oriented simple cycle T of length at least

2d + 2. By Lemma 2, G has no simple cycle of length d + 1 to 2d + 1, inclusive;
thus Cd is generated by (edges of) simple cycles of length at most d.

We first show that ∂1(T ) is not in Cd, thus Cd �= C and the quotient C/Cd

is nontrivial. By general considerations, we know that it is a Z-module of some
finite dimension; we show later that the dimension is 1.

An element of H2 is reduced if it is an expression of the form β + γ, where

(i) β ∈ P2;
(ii) β is orthogonal to H2

2 ; that is, 〈e〉 • β = 0 for all e;
(iii) γ ∈ H2

2 ; and
(iv) it is not the case that ∂1(〈e〉) ≤ ∂1(β) for any edge e.

Intuitively, conditions (i)–(iv) say, respectively, that β is positive, β is a sum of
cycles of length 3 or greater, γ is a weighted sum of cycles of length 2, and no
two cycles of β contain a complementary pair of edges e, e.

We now claim that for every element of α ∈ H2, there is a reduced expression
β+γ ∈ H2 such that ∂1(α) = ∂1(β+γ). Moreover, if α ∈ Hd

2 , then we can ensure
that β ∈ Hd

2 ; thus the reduction process does not introduce any long cycles.
First, express α as a sum β1 + γ1, where β1 is a weighted sum of cycles of

length at least 3 and γ1 is a weighted sum of cycles of length 2. Then β and γ
satisfy (ii) and (iii). To obtain (i), we observe that

∂1(α + α) = ∂1(
∑

e

(e • α)〈e〉);
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intuitively, all the edges in α + α occur in complementary pairs. Thus

∂1(−α) = ∂1(α −
∑

e

(e • α)〈e〉).

If β1 = β+
1 − β−

1 with β+
1 , β−

1 ∈ P2, let

β2 = β+
1 + β

−
1 γ2 = γ1 −

∑

e

(e • β−
1 )〈e〉.

Then ∂1(α) = ∂1(β2 + γ2) and β2 + γ2 satisfies (i)–(iii).
Note that none of the operations so far have introduced any long cycles. Thus

if α ∈ Hd
2 then β2 ∈ Hd

2 .
Finally, to get (iv), suppose ∂1(〈e〉) ≤ ∂1(β2). Since 〈e〉 • β2 = 0, we must

have θ, θ′ ∈ Δ and e ∈ E such that θ + θ′ ≤ β2 and ∂1(〈e〉) ≤ ∂1(θ + θ′). We
have ∂1(θ + θ′ − 〈e〉) ∈ P1 ∩ C, so by Lemma 8(ii) there exists η ∈ P2 such that
∂1(η) = ∂1(θ + θ′ − 〈e〉). Write η as η′ + η′′, where η′ is orthogonal to H2

2 and
η′′ ∈ H2

2 , and let

β3 = β2 − θ − θ′ + η′ γ3 = γ2 + η′′ + 〈e〉.
Then ∂1(α) = ∂1(β3 + γ3) and β3 + γ3 still satisfies (i)–(iii).

Moreover, β3 ∈ Hd
2 if β2 ∈ Hd

2 . To see this, observe that the inner product
with

∑
e e gives the sum of the coefficients, which for a cycle gives the length of

the cycle. If η =
∑

i ηi, where each ηi ∈ Δ, then because θ, θ′ ∈ Δd, we have
∑

i

((
∑

e

e) • ∂1(ηi)) = (
∑

e

e) • ∂1(η)

= (
∑

e

e) • ∂1(θ + θ′ − 〈e〉)

= (
∑

e

e) • ∂1(θ + θ′) − (
∑

e

e) • ∂1(〈e〉)

≤ 2d − 2,

therefore each ηi in the sum η is of length at most 2d − 2. By Lemma 2, it is of
length at most d.

The previous step can be repeated only finitely many times before (iv) be-
comes satisfied, because each time the inner product of the current βi with

∑
e e

decreases by two. We have shown that every α is equivalent modulo ∂1 to a
reduced β + γ. Moreover, if α ∈ Hd

2 , then β ∈ Hd
2 .

Now we argue that if α ∈ Δ and ∂1(α) ∈ Cd, then α ∈ Δd. This implies that
∂1(T ) �∈ Cd, since T �∈ Δd.

Suppose α ∈ Δ and ∂1(α) ∈ Cd. If α is of length 2, there is nothing to prove,
so assume α is of length at least 3. There is a reduced form expression β + γ
such that ∂1(α) = ∂1(β + γ), β ∈ Hd

2 , and γ ∈ H2
2 . For any edge e ∈ E,

(e − e) • ∂1(α − β) = (e − e) • ∂1(γ) = 0,
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since γ is a weighted sum of cycles of length 2; therefore

e • ∂1(α) − e • ∂1(α) = e • ∂1(β) − e • ∂1(β).

Because α is a simple cycle of length at least 3, each of e • ∂1(α) and e • ∂1(α) is
either 1 or 0, and not both are 1. Also, since β satisfies (iv) of reduced expressions,
one of e • ∂1(β) or e • ∂1(β) must be 0. It follows by an easy case analysis that we
must have e • ∂1(α) = e • ∂1(β) in all cases. As e was arbitrary, ∂1(α) = ∂1(β).
As α is a simple cycle and β is a positive sum of simple cycles, we must have
α = β.

Now we argue that there is only one long simple cycle modulo short simple
cycles. Let T and T ′ be two oriented long simple cycles. Let a and b be points
on T of maximum distance from each other. Let p and q be local articulation
points on T such that p is of distance at most d/2 from a, moving in the forward
direction on T , and q is of distance at most d/2 from b, also moving in the forward
direction; p and q are at least distance d + 1 − �d/2� = d/2� + 1 apart on T .
Since local articulation points are not subtended by chords, removal of p and q
disconnects the graph. Moreover, both T and T ′ traverse p and q, otherwise we
could construct a forbidden subgraph like the one in Example 2. Thus T and T ′

traverse them exactly once, as they are simple cycles. We can assume without
loss of generality that T and T ′ are oriented so as to traverse them in opposite
directions.

Consider ∂1(T ′ + T ) ∈ C; we show that this expression vanishes modulo
Cd. Every edge e of T ′ is contained in a maximal segment of T ′ all of whose
intermediate nodes do not lie on T . This segment is a chord of T consisting
of edges of T ′ such that its endpoints are distinct and lie on both T and T ′.
The length of the chord and the length of the segment of T subtended by the
chord are both at least 1 and at most d/2, otherwise we could construct a
forbidden subgraph. Thus these two undirected segments together form a short
simple cycle, which we orient in the opposite direction from T ′; that is, the cycle
contains the edge e for every edge e on the chord. The segment of the short cycle
coinciding with T is oriented in either the same direction as T or the opposite
direction. Let R be the set of short simple cycles obtained in this way.

Now let γ be a maximal sum of cycles of length 2 such that ∂1(γ) ≤ ∂1(T ′ +
T +

∑
R). We argue that ∂1(T ′ + T +

∑
R − γ) = 0. Consider each edge e ∈ E

separately. If neither e nor e is an edge of T ′ or T , then e • ∂1(T ′ + T +
∑

R −
γ) = 0. If e lies on T ′ but neither e nor e lies on T , then there is exactly one
element of R containing e and none containing e. Since both e and e appear in
∂1(T ′ + T +

∑
R) with coefficient 1, 〈e〉 appears in γ, and

e • ∂1(T ′ + T +
∑

R − γ) = e • ∂1(T ′ +
∑

R − γ) = 0.

It remains to calculate the coefficient of e and e in ∂1(T ′ + T +
∑

R − γ) for
e = uv lying on T . Suppose p, u, v, q occur on T in that order. Let P be the
segment of T between p and u and let Q be the segment of T between v and q.
The segment of T ′ from q to p traverses an odd number of chords subtending e,
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including possibly one of e or e itself, and the traversals from Q to P and from P
to Q must alternate, with one more traversal from Q to P . Each of these chords
is responsible for a cycle of R containing either e or e, depending on whether
the chord goes from Q to P or from P to Q, respectively. So the coefficients of e
and e in ∂1(

∑
R) are k and k+1, respectively, for some k ≥ 0. This includes the

case in which e or e is an edge of T ′, except the value of k is one greater. Adding
in the e from T , we have that the coefficients of e and e in ∂1(T ′ + T +

∑
R)

are both k + 1. Since γ was chosen maximally, 〈e〉 appears in γ with coefficient
k + 1, therefore the coefficients of e and e in ∂1(T ′ + T +

∑
R − γ) are both 0.

Since e was arbitrary, we have ∂1(T ′ + T +
∑

R − γ) = 0, so ∂1(T + T ′) =
∂1(γ−

∑
R) ∈ Cd, therefore ∂1(T ′) is equivalent to −∂1(T ) modulo Cd. We have

shown that every element of C is equivalent modulo Cd to kT for some k ∈ Z.

References

1. Bollobás, B., Harris, A.J.: List-colourings of graphs. Graphs and Combina-
torics 1(2), 115–127 (1985)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. The MacMillan
Press Ltd. (1978)

3. Chetwynd, A.: Total colourings of graphs. In: Nelson, R., Wilson, R.J. (eds.) Graph
Colourings. Pitman Research Notes in Mathematics Series, pp. 65–77. Longman
Scientific & Technical, Longman house, Burnt Mill, Harlow, Essex, UK (1990)

4. Fiorini, S., Wilson, R.J.: Edge-colourings of graphs. In: Beineke, L.W., Wilson,
R.J. (eds.) Selected Topics in Graph Theory, ch. 5, pp. 103–126. Academic Press,
Inc., London (1978)

5. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE
Trans. Veh. Technol. VT-35, 8–14 (1986)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1990)

7. Garey, M.R., Johnson, D.S., So, H.C.: An application of graph coloring to printed
circuit testing. IEEE Transactions on Circuits and Systems CAS-23(10), 591–598
(1976)

8. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)
9. Hopcroft, J., Tarjan, R.E.: Algorithm 447: Efficient algorithms for graph manipu-

lation. Commun. ACM 16(6), 372–378 (1973)
10. Kozen, D., Sharp, A.: On distance coloring. Technical Report cul.cis/TR2007-2084,

Cornell University (2007)
11. Makowsky, J.A.: Colored tutte polynomials and kauffman brackets for graphs of

bounded tree width. In: Proceedings of the 12th Annual Symposium on Discrete
Algorithms (SODA 2001), pp. 487–495. SIAM (2001)

12. Noble, S.D.: Evaluating the tutte polynomial for graphs of bounded tree-width.
Comb. Probab. Comput. 7(3), 307–321 (1998)

13. Robertson, N., Seymour, P.D.: Graph minors. ii. algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

14. Sharp, A.: Distance Coloring. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA
2007. LNCS, vol. 4698, pp. 510–521. Springer, Heidelberg (2007)

15. Wilson, B.: Line-distinguishing and harmonious colourings. In: Nelson, R., Wilson,
R.J. (eds.) Graph Colourings. Pitman Research Notes in Mathematics Series, pp.
115–133. Longman Scientific & Technical, Longman house, Burnt Mill, Harlow,
Essex, UK (1990)



Winning, Losing and Drawing

in Concurrent Games
with Perfect or Imperfect Information

Glynn Winskel

Computer Laboratory, University of Cambridge, UK

Abstract. Nondeterministic concurrent strategies—those strategies
compatible with copy-cat behaving as identity w.r.t. composition—have
been characterised as certain maps of event structures. This leads to a
bicategory of general concurrent games in which the maps are nonde-
terministic concurrent strategies. This paper explores the consequences
of extending concurrent games with (1) winning, losing and, implicitly,
neutral configurations, and (2) access levels, to address situations where
Player or Opponent have imperfect information as to what has occurred
in the game. In both cases winning strategies are shown to form bicat-
egories of games. The bicategories become equivalent to order-enriched
categories when restricted to deterministic strategies.

1 Introduction

Dexter Kozen is an inspiring speaker, enjoys teaching, and has a history of involv-
ing students, including undergraduates, in research. We share a close association
with the Computer Science department at Aarhus, Denmark, going back over
several decades—we first met there in 1979. This paper, in Dexter’s honour, is
based on a recent student project from a lecture course on concurrent games I
gave in Aarhus last summer (August-September, 2011) [1].

Its roots lie in John Conway’s “Numbers and Games” [2]. There Conway
defined his “surreal numbers” as strengths of certain games: he defined a pre-
order between games G and H if a winning strategy for G gives rise to a winning
strategy for H ; the surreal numbers appeared as equivalence classes induced by
the preorder. Shortly afterwards André Joyal uncovered a category underpinning
Conway’s work. Conway’s games support two important operations on two-party
games: a form of parallel compositionG‖H , which Conway called a sum of games;
a dualizing operation G⊥ which reverses the roles of Player and Opponent in
G, which Conway called negation. Joyal, following the method used in Conway’s
proofs, defined a strategy σ from a game G to a game H , written σ : G + ��H, to
be a strategy σ in G⊥‖H. Joyal showed that strategies compose, with identities
given by copy-cat strategies. A strategy in H corresponds to a strategy from the
empty game ∅ to H . Note that

∅ + ��G + ��H composes to give ∅ + ��H ,

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 298–317, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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so a strategy in G gives rise to a strategy in H when there is a strategy from
G to H . Conway’s pre-order between games G and H is witnessed through the
presence of a winning strategy of from G to H .

This article takes the ideas of Conway and Joyal into the realm of concur-
rent/distributed processes. It brings the experience of concurrency (event struc-
tures, stable families, their techniques and constructions originally used in the
semantics of process languages [3]) to bear on the theory of games. It considers
a very general definition of 2-party concurrent games in which Player (more ac-
curately thought of as a team of players) competes against Opponent (a team
of opponents) in a potentially highly-distributed fashion, without for instance
insisting on the alternation of Player and Opponent moves. For most of the
article the games will be games of perfect information, in that Player can see
all moves of Opponent, and vice versa. An example of such a concurrent game
would be simultaneous chess, possibly with collaboration between players. How-
ever, the dichotomy Player/Opponent can also be read as process/environment,
proof/refutation, or ally/enemy, and there are many other examples of concur-
rent games in Computer Science and Logic, and beyond.

The methodology is essentially that of Joyal, following Conway, developed
within a general model for concurrent computation. Two-party games and strate-
gies are represented as event structures with polarity, in which polarities distin-
guish the moves of Player and Opponent—cf. [4]. A pre-strategy is a total map
σ : S → A of event structures with polarity. The map expresses how moves of
Player and Opponent, the events of S, correspond to the moves permitted by
the game, the events of A; that σ is a map ensures that play of respects the con-
straints of the game. Following Joyal, a pre-strategy from a game A to a game B
is understood as a pre-strategy in a composite game got by setting the dual game
of A, reversing the roles of Player and Opponent, in parallel with B. From this
general scheme nondeterministic concurrent strategies—pre-strategies for which
copy-cat strategies behave as identities w.r.t. composition of pre-strategies—have
recently been characterized as those pre-strategies which satisfy the two condi-
tions of receptivity and innocence [5]. The extension with winning conditions and
the question of when and whether concurrent games are determined (i.e. there
is either a winning strategy for Player or Opponent) is considered in the Aarhus
lecture notes [1] and the forthcoming article [6]. The two contributions of this
paper are: (1) an extension of the framework to games with neutral positions,
which as outcomes of a play yield a draw (the student project at Aarhus); (2)
an extension to concurrent games with imperfect information, where moves may
be hidden, so cannot be taken account of by strategies. Where the article builds
on earlier results proofs can be found in the Aarhus lecture notes [1].

A word on related work. A general motivation has been the search for a form
of generalized domain theory suitable for the semantics of concurrent processes
and proofs [7]. An early definition of concurrent games appears in [8], where
Samson Abramsky and Paul-André Melliès presented deterministic concurrent
strategies as, essentially, partial closure operators on the domain of configura-
tions of an event structure; such an operator takes any reachable configuration
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of the game to the result of playing the intended moves of Player. Their motiva-
tion was the representation of proofs in linear logic. There followed a battery of
insightful papers by Melliès and colleagues on asynchronous games culminating
in the definition of ingenuous strategies—see e.g. [4,9]. The receptive ingenuous
strategies of Melliès and Samuel Mimram have been shown to coincide with
the deterministic concurrent strategies of [5], so justifying receptive ingenuous
strategies as the most general deterministic concurrent strategies for which copy-
cat behaves as identity. In comparison with early work of Abramsky and Martin
Hyland on winning conditions in sequential games, the work here is closer to
Hyland’s, which it can be seen as extending [10,11]. The extension to games of
imperfect information was guided solely by the wish to handle such games in a
way that respected the bicategorical structure on concurrent games. There are
however striking similarities with work by Abramsky and Radha Jagadeesan on
games for access control [12].

2 Event Structures and Stable Families

An event structure comprises (E,Con,≤), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con =⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite⇒ X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(E) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-
dency in an event structure are regarded as concurrent. In games the relation
of immediate dependency e � e′, meaning e and e′ are distinct with e ≤ e′

and no event in between, will play a very important role. For X ⊆ E we write
[X ] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure of X ; note if X ∈ Con, then
[X ] ∈ Con.

Example 1. The diagram below represents an event structure with five events in
which, for example, d causally depends on the previous occurrence of a and b,
while the two events b and c are inconsistent with each other (the squiggly line
represents that the {b, c} is not consistent).
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d e

a

��������

b

���� �������

����

������ c

As {b, c} is not consistent neither is {e, c}, but we need not draw this as it is en-
tailed by the axioms on the consistency relation. Often consistency/inconsistency
is determined in a binary fashion and we can take advantage of this in a diagram
of the event structure. However, this is not always the case. Consider for instance
the event structure consisting of the three events 1, 2, 3 with the discrete order
and consistency relation

Con = { ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} }
�

Operations such as synchronized parallel composition are awkward to define di-
rectly on the simple event structures above. It is useful to broaden event struc-
tures to stable families, where operations are often carried out more easily, and
then turned into event structures by the operation Pr below.

A stable family comprises F , a nonempty family of finite subsets, called con-
figurations, which satisfy:
Completeness: ∀Z ⊆ F . Z ↑ =⇒ ⋃

Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e = e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y) ;

Stability: ∀x, y ∈ F . x ↑ y =⇒ x ∩ y ∈ F .
Above, Z ↑ means ∃x ∈ F∀z ∈ Z. z ⊆ x, and expresses the compatibility of Z
in F ; we use x ↑ y for {x, y} ↑. We call elements of

⋃F events of F .

Proposition 1. Let x be a configuration of a stable family F . For e, e′ ∈ x
define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y =⇒ e′ ∈ y.
When e ∈ x define the prime configuration

[e]x =
⋂
{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.
Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition 2. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is an
event structure where:

P = {[e]x | e ∈ x & x ∈ F} ,
Z ∈ Con iff Z ⊆ P &

⋃
Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .
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A (partial) map of stable families f : F → G is a partial function f from the
events of F to the events of G such that for all configurations x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) =⇒ e1 = e2) .

Maps of event structures are maps of their stable families of configurations. Maps
compose as functions. We say a map is total when it is total as a function.

Pr is the right adjoint of the “inclusion” functor, taking an event structure
E to the stable family C(E). The unit of the adjunction E → Pr(C(E)) takes
an event e to the prime configuration [e] =def {e′ ∈ E | e′ ≤ e}. The counit
max : C(Pr(F))→ F takes prime configuration [e]x to its maximum event e; the
image of a configuration x ∈ C(Pr(F)) under the map max is

⋃
x ∈ F .

Definition 1. Let F be a stable family. We use x−⊂y to mean y covers x in

F , i.e. x ⊂ y in F with nothing in between, and x
e−−⊂ y to mean x ∪ {e} = y

for x, y ∈ F and event e /∈ x. We sometimes use x
e−−⊂ , expressing that event

e is enabled at configuration x, when x
e−−⊂ y for some y. W.r.t. x ∈ F , write

[e)x =def {e′ ∈ E | e′ ≤x e & e′ = e}, so, for example, [e)x
e−−⊂ [e]x. The relation

of immediate dependence of event structures generalizes: with respect to x ∈ F ,
the relation e �x e

′ means e ≤x e′ with e = e′ and no event in between.

3 Process Operations

3.1 Products

Let A and B be stable families with events A and B, respectively. Their prod-
uct, the stable family A × B, has events comprising pairs in A ×∗ B =def

{(a, ∗) | a ∈ A} ∪ {(a, b) | a ∈ A & b ∈ B} ∪ {(∗, b) | b ∈ B}, the product of sets
with partial functions, with (partial) projections π1 and π2—treating ∗ as
‘undefined’—with configurations x ∈ A× B iff

x is a finite subset of A×∗ B s.t. π1x ∈ A & π2x ∈ B,
∀e, e′ ∈ x. π1(e) = π1(e′) or π2(e) = π2(e′)⇒ e = e′ ,&
∀e, e′ ∈ x. e = e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B & (e ∈ y ⇐⇒ e′ /∈ y) .

Right adjoints preserve products. Consequently we obtain a product of event
structures A and B by first regarding them as stable families C(A) and C(B),
forming their product C(A)×C(B), π1, π2, and then constructing the event struc-
ture

A×B =def Pr(C(A)× C(B))

and its projections as Π1 =def π1max and Π2 =def π2max .
Later we shall use the following lemma relating immediate causal dependency

in a product of stable families to immediate dependency in the components.

Lemma 1. Suppose e �x e
′ in a product of stable families A× B, π1, π2.

(i) If e = (a, ∗) then e′ = (a′, b) or e′ = (a′, ∗) with a �π1x a
′ in A.

(ii) If e′ = (a′, ∗) then e = (a, b) or e = (a, ∗) with a �π1x a
′ in A.

(iii) If e = (a, b) and e′ = (a′, b′) then a �π1x a
′ in A or b �π2x b

′ in B.
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3.2 Restriction

The restriction of F to a subset of events R is the stable family F � R =def

{x ∈ F | x ⊆ R} . Defining E � R, the restriction of an event structure E to a
subset of events R, to have events E′ = {e ∈ E | [e] ⊆ R} with causal depen-
dency and consistency induced by E, we obtain C(E �R) = C(E) �R .

Proposition 3. Let F be a stable family and R a subset of its events. Then,
Pr(F �R) = Pr(F)�max−1R .

3.3 Synchronized Compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously according
to the specific synchronized composition. For example, the synchronized com-
position of Milner’s CCS on stable families A and B (with labelled events) is
defined as A×B �R where R comprises events which are pairs (a, ∗), (∗, b) and
(a, b), where in the latter case the events a of A and b of B carry complemen-
tary labels. Similarly, synchronized compositions of event structures A and B
are obtained as restrictions A × B � R. By Proposition 3, we can equivalently
form a synchronized composition of event structures by forming the synchro-
nized composition of their stable families of configurations, and then obtaining
the resulting event structure—this has the advantage of eliminating superfluous
events earlier.

3.4 Projection

Event structures support a simple form of hiding. Let (E,≤,Con) be an event
structure. Let V ⊆ E be a subset of ‘visible’ events. Define the projection of E
on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and
X ∈ ConV iff X ∈ Con & X ⊆ V .

4 Event Structures with Polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, which comprises (E, pol ) where E is an event structure with a
polarity function pol : E → {+,−} ascribing a polarity + (Player) or − (Op-
ponent) to its events. The events correspond to (occurrences of) moves. Maps
of event structures with polarity are maps of event structures which preserve
polarity.

4.1 Operations

Dual. The dual, E⊥, of an event structure with polarity E comprises a copy of
the event structure E but with a reversal of polarities. It obviously extends to a
functor. Write e ∈ E⊥ for the event complementary to e ∈ E and vice versa.
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Simple Parallel Composition. This operation simply juxtaposes two event
structures with polarity. Let (A,≤A,ConA, polA) and (B,≤B ,ConB , polB) be
event structures with polarity. The events of A‖B are ({1} × A) ∪ ({2} × B),
their polarities unchanged, with: the only relations of causal dependency given
by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤ (2, b′) iff b ≤B b′; a subset of events
C is consistent in A‖B iff {a | (1, a) ∈ C} ∈ ConA and {b | (2, b) ∈ C} ∈ ConB.
The operation extends to a functor—put the two maps in parallel. The empty
event structure with polarity , written ∅, is the unit w.r.t. ‖.

5 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events stand
for the possible occurrences of moves of Player and Opponent and its causal
dependency and consistency relations for the constraints imposed by the game.
A pre-strategy in A is a total map σ : S → A from an event structure with
polarity S. A pre-strategy represents a nondeterministic play of the game—all
its moves are moves allowed by the game and obey the constraints of the game;
the concept will later be refined to that of strategy (and winning strategy in
Section 7). Two pre-strategies σ : S → A and τ : T → A in A will be essentially
the same when they are isomorphic, i.e. there is an isomorphism S ∼= T such
that

S

σ
���

��
��

��
∼= T

τ

��
A

commutes. Then we write σ ∼= τ .
Let A and B be event structures with polarity. Following Joyal [13], a pre-

strategy from A to B is a pre-strategy in A⊥‖B, so a total map σ : S → A⊥‖B.
It thus determines a span

S
σ1

�	��
��
��
�� σ2

�
�
��

��
��

�

A⊥ B ,

of event structures with polarity where σ1, σ2 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s ∈ S either,
but not both, σ1(s) or σ2(s) is defined. Two pre-strategies from A to B will be
isomorphic when they are isomorphic as pre-strategies in A⊥‖B, or equivalently
are isomorphic as spans. We write σ : A + ��B to express that σ is a pre-strategy
from A to B. Note a pre-strategy σ in a game A coincides with a pre-strategy
from the empty game σ : ∅ + ��A.
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5.1 Composing Pre-strategies

Consider two pre-strategies σ : A + ��B and τ : B + ��C as spans:

S
σ1

�	��
��
��
�� σ2

���
��

��
��

�

A⊥ B

T
τ1

�	��
��
��
�� τ2

�
�
��

��
��

�

B⊥ C .

We show how to define their composition τ�σ : A + ��C as the result of a syn-
chronized composition, followed by projection to hide internal synchronization
events. We first form the synchronized composition of S and T by restricting the
product S × T , with projections Π1 : S × T → S and Π2 : S × T → T , to allow
only those synchronizations associated with complementary events, of different
polarities, in B and B⊥. Specifically, the synchronized composition is S×T �Syn
where

Syn = {p ∈ S × T | σ1Π1(p) is defined & Π2(p) is undefined} ∪
{p ∈ S × T | τ2Π2(p) is defined & Π1(p) is undefined} ∪
{p ∈ S × T | σ2Π1(p) = τ1Π2(p) with both defined} .

We define T�S =def (S × T � Syn) ↓ V where

V= {p ∈ S × T � Syn | σ1Π1(p) is defined}∪ {p ∈ S × T � Syn | τ2Π2(p) is defined} .
Finally, the composition τ�σ is defined to be the span

T�S
σ1Π1

	�		
		
		
		 τ2Π2


�















A⊥ C .

As remarked in Section 3.3, the same construction is achieved by first forming
the synchronized composition of the stable families C(S) and C(T ) (we often use
this description in proofs):

Proposition 4. The composition T�S = Pr(C(S)× C(T ) �R) ↓ V , where

R = {(s, ∗) | s ∈ S & σ1(s) is defined} ∪ {(∗, t) | t ∈ T & τ2(t) is defined} ∪
{(s, t) | s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined} .

The span τ�σ comprises maps υ1 : T�S → A⊥ and υ2 : T�S → C, which on
events p of T�S act so υ1(p) = σ1(s) when max (p) = (s, ∗) and υ2(p) = τ2(t)
when max (p) = (∗, t), and are undefined elsewhere.

The natural isomorphism S×(T×U) ∼= (S×T )×U , associated with the product
of event structures S, T, U , restricts to the required isomorphism of spans as the
synchronizations involved in successive compositions are disjoint:

Proposition 5. Let σ : A + ��B, τ : B + ��C and υ : C + ��D be pre-strategies.
The two compositions υ�(τ�σ) and (υ�τ)�σ are isomorphic.
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5.2 Concurrent Copy-Cat

Identities w.r.t. composition are given by copy-cat strategies. Let A be an event
structure with polarity. The copy-cat strategy from A to A is an instance of
a pre-strategy, so a total map γA : CCA → A⊥‖A. It describes a concurrent,
or distributed, strategy based on the idea that Player moves, of +ve polarity,
always copy previous corresponding moves of Opponent, of −ve polarity.

For c ∈ A⊥‖A we use c to mean the corresponding copy of c, of opposite
polarity, in the alternative component, i.e. (1, a) = (2, a) and (2, a) = (1, a) .
Define CCA to comprise the event structure with polarity A⊥‖A together with
extra causal dependencies c ≤CCA

c for all events c with polA⊥‖A(c) = +.

Proposition 6. Let A be an event structure with polarity. Then CCA is an event
structure with polarity. Moreover,

x ∈ C(CCA) iff x ∈ C(A⊥‖A) & ∀c ∈ x. polA⊥‖A(c) = + =⇒ c ∈ x .
The copy-cat pre-strategy γA : A + ��A is defined to be the map γA : CCA →
A⊥‖A where γA is the identity on the common set of events.

Example 2. We illustrate the construction of the copy-cat strategy for the event
structure A comprising the single immediate dependency a1 � a2 from an Op-
ponent move a1 to a Player move a2. The event structure CCA is obtained from
A⊥‖A by adjoining the additional immediate dependencies shown:

A⊥ a2 � ������ ⊕ a2 A

a1 ⊕

����

� a1

����

���� � � �

The pre-strategy γA : CCA → A⊥‖A is defined to act simply as the identity
function on events. �

6 Strategies

The main result of [5], presented summarily here, is that two conditions on pre-
strategies, receptivity and innocence, are necessary and sufficient for copy-cat to
behave as identity w.r.t. the composition of pre-strategies. Receptivity ensures
an openness to all possible moves of Opponent. Innocence restricts the behaviour
of Player; Player may only introduce new relations of immediate causality of the
form �� ⊕ beyond those imposed by the game.

Receptivity. A pre-strategy σ is receptive iff σx
a−−⊂ & polA(a) = − ⇒ ∃!s ∈

S. x
s−−⊂ & σ(s) = a .

Innocence. A pre-strategy σ is innocent when it is both
+-innocent: if s � s′ & pol(s) = + then σ(s) � σ(s′), and
−-innocent: if s � s′ & pol(s′) = − then σ(s) � σ(s′).
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Theorem 1. Let σ : A + ��B be pre-strategy. Copy-cat behaves as identity w.r.t.
composition, i.e. σ ◦ γA ∼= σ and γB ◦ σ ∼= σ, iff σ is receptive and innocent.
Copy-cat pre-stategies γA : A + ��A are receptive and innocent.

6.1 The Bicategory of Concurrent Games and Strategies

Theorem 1 motivates the definition of a strategy as a pre-strategy which is recep-
tive and innocent. In fact, we obtain a bicategory, Games, in which the objects
are event structures with polarity—the games, the arrows from A to B are strate-
gies σ : A + ��B and the 2-cells are maps of spans. The vertical composition of
2-cells is the usual composition of maps of spans. Horizontal composition is given
by the composition of strategies � (which extends to a functor on 2-cells via the
functoriality of synchronized composition).

A strategy σ : A + ��B corresponds to a dual strategy σ⊥ : B⊥ + ��A⊥. This
duality arises from the correspondence

S

σ1

�	��
��
��
�� σ2

���
��

��
��

�

A⊥ B

←→ S

σ2

	���
��
��
��

σ1

�








(B⊥)⊥ A⊥ .

The dual of copy-cat, γ⊥A , is isomorphic to the copy-cat of the dual, γA⊥ , for A an
event structure with polarity. The dual of a composition of pre-strategies (τ�σ)⊥

is isomorphic to the composition σ⊥�τ⊥. This duality will be maintained in all
the bicategories of games we shall consider.

6.2 The Subcategory of Deterministic Strategies

Say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg [X ] ∈ ConS =⇒ X ∈ ConS ,

where Neg[X ] =def {s′ ∈ S | pol(s′) = − & ∃s ∈ X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends only
on a consistent set of opponent moves. Say a strategy σ : S → A is deterministic
if S is deterministic.

Lemma 2. An event structure with polarity S is deterministic iff

∀s, s′ ∈ S, x ∈ C(S). x
s−−⊂ & x

s′−−⊂ & pol (s) = + =⇒ x ∪ {s, s′} ∈ C(S) .

In general, a copy-cat strategy can fail to be deterministic, illustrated below.

Example 3. Take A to consist of two events, one +ve and one −ve event, incon-
sistent with each other. The construction CCA:

A⊥ � ������

��
��
��

⊕ A

��
��
��

⊕ ����� � � �
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To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right. �

Copy-cat γA is deterministic iff immediate conflict in A respects polarity, or
equivalently that there is no immediate conflict between +ve and −ve events, a
condition we call ‘race-free.’

Lemma 3. Let A be an event structure with polarity. The copy-cat strategy γA
is deterministic iff

∀x ∈ C(A). x
a−−⊂ & x

a′−−⊂ & pol(a) = + & pol(a′) = −
=⇒ x ∪ {a, a′} ∈ C(A) .

(Race− free)

Lemma 4. The composition of deterministic strategies is deterministic.

Lemma 5. A deterministic strategy σ : S → A is injective on configurations
(equivalently, σ is mono in the category of event structures with polarity).

We obtain a sub-bicategory DGames of Games by restricting objects to race-
free games and strategies to being deterministic. Via Lemma 5, deterministic
strategies in a game correspond to certain subfamilies of configurations of the
game. A characterization of those subfamilies which correspond to determin-
istic strategies shows them to coincide with the receptive ingenuous strategies
of Mimram and Melliès [9]. Via the presentation of deterministic strategies as
families DGames is equivalent to an order-enriched category.

7 Winning, Losing and Drawing

A game with winning/losing conditions comprises G = (A,W,L) where A is an
event structure with polarity and W ⊆ C∞(A) consists of the winning configu-
rations disjoint from the losing configurations L ⊆ C∞(A) for Player. We do not
insist that W and L partition the set C∞(A)—there may be neutral configura-
tions at which Player and Opponent draw.

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ : S → A in G
is winning (for Player) if σx ∈ W for all +-maximal configurations x ∈ C∞(S)—

a configuration x is +-maximal if whenever x
s−−⊂ then the event s has −ve

polarity. Any achievable position z ∈ C∞(S) of the game can be extended to a +-
maximal, so winning, configuration (via Zorn’s Lemma). So a strategy prescribes
Player moves to reach a winning configuration whatever state of play is achieved
following the strategy. Note that for a game A, if winning conditionsW =C∞(A),
i.e. every configuration is winning, then any strategy in A is a winning strategy.

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
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Player. Suppose σ : S → A is a strategy in a game (A,W ). A counter-strategy
is strategy of Opponent, so a strategy τ : T → A⊥ in the dual game. We
can view σ as a strategy σ : ∅ + ��A and τ as a strategy τ : A + ��∅. Their
composition τ�σ : ∅ + ��∅ is not in itself so informative. Rather it is the status
of the configurations in C∞(A) their full interaction induces which decides which
of Player or Opponent wins. For this we should consider the composition of σ
and τ before hiding internal synchronizations:

S × T � Syn
Π1

����
��
���

��
Π2

����
��

���
���

S

����
��
��
�

σ

����
��

���
��

� T
τ

����
��
���

��

���
��

��
��

�

∅ A A⊥ ∅
where

Syn = {p ∈ S × T | σΠ1(p) = τΠ2(p) with both defined} .
Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(S×T �Syn). A maximal configuration z in C∞(S×T �Syn)
images to a configuration σΠ1z = τΠ2z in C∞(A). Define the set of results of
the interaction of σ and τ to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(S × T � Syn)} .
A configuration x ∈ 〈σ, τ〉, resulting from a play of σ against τ may be a win for
Player, if x ∈ W , a loss for Player and a win for Opponent, if x ∈ L, or a draw,
when x /∈ W ∪ L.

Lemma 6. Let σ : S → A be a strategy in a game (A,W,L). The strategy σ is a
winning for Player iff 〈σ, τ〉 ⊆W for all (deterministic) strategies τ : T → A⊥.

Corollary 1. There are the following three equivalent ways to say that a strategy
σ : S → A is winning in (A,W,L):

1. σx ∈ W for all +-maximal configurations x ∈ C∞(S), i.e. the strategy
prescribes Player moves to reach a winning configuration, no matter what
the activity or inactivity of Opponent;

2. 〈σ, τ〉 ⊆ W for all strategies τ : T → A⊥, i.e. all plays against counter-
strategies of the Opponent result in a win for Player;

3. 〈σ, τ〉 ⊆ W for all deterministic strategies τ : T → A⊥, i.e. all plays against
deterministic counter-strategies of the Opponent result in a win for Player.

The proof of Lemma 6 relies on the following general lemma which will be
useful later. Its proof and those of the lemma and corollary above can be found
in [1]—they are essentially repeats of the corresponding proofs for games with
just winning conditions.
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Lemma 7. Let σ : S → A⊥‖B and τ : T → B⊥‖C be receptive pre-strategies.
Then,

z ∈ C∞(T × S � Syn) is +-maximal iff

Π1z ∈ C∞(S) is +-maximal & Π2z ∈ C∞(T ) is +-maximal.

A convention is being adopted in Lemma 7. The events of T × S � Syn are
constructed as prime configurations p of a stable family, and as such max (p) has
the form (s, ∗), (∗, t) or (s, t), with s ∈ S and t ∈ T . An event p with max (p) of
the form (s, ∗) or (∗, t) adopts the polarity of the event s or t, while those p with
max (p) = (s, t) are regarded as not having a polarity. By x ∈ C∞(T × S � Syn)

is +-maximal is meant that whenever x
e−−⊂ the event e has −ve polarity.

8 Operations

8.1 Dual

There is an obvious dual of a game G = (A,WG, LG) which reverses the role of
Player and Opponent: G⊥ = (A⊥,WG⊥ , LG⊥) where

x ∈WG⊥ ⇐⇒ x ∈ LG and

x ∈ LG⊥ ⇐⇒ x ∈ WG .

Here, and in future, we extend the bar-notation for the bijection between events
of A and A⊥ to configurations: a configuration x ∈ C∞(A) corresponds to a
configuration x =def {a | a ∈ x} ∈ C∞(A⊥).

8.2 Parallel Composition

The parallel composition of two games G = (A,WG, LG), H = (B,WH , LH) is

G‖H =def (A‖B, WG‖C∞(B) ∪ C∞(A)‖WH , LG‖LH)

where X‖Y = {{1} × x ∪ {2} × y | x ∈ X & y ∈ Y } when X and Y are subsets
of configurations. In other words, for x ∈ C∞(A‖B),

x ∈WG‖H ⇐⇒ x1 ∈WG or x2 ∈WH , and

x ∈ LG‖H ⇐⇒ x1 ∈ LG & x2 ∈ LH ,
where x1 = {a | (1, a) ∈ x} and x2 = {b | (2, b) ∈ x}. To win in G‖H is to win
in either game; to lose is to lose in both games. The unit of ‖ is (∅, ∅, {∅}).

8.3 Tensor

For gamesG = (A,WG, LG), H = (B,WH , LH), defining G⊗H =def (G⊥‖H⊥)⊥

we obtain a game where to win is to win in both games G and H , and to lose is
to lose in either game. More explicitly,

(A,WG, LG)⊗ (B,WH , LH) =def (A‖B, WG‖WH , LG‖C∞(B) ∪ C∞(A)‖LH) .

The unit of ⊗ is (∅, {∅}, ∅).
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8.4 Function Space

With G � H =def G
⊥‖H a win in G � H is a win in H conditional on not

losing in G:

Proposition 1. Let G = (A,WG, LG) and H = (B,WH , LH) be games with
winning conditions. Write WG�H , LG�H for the winning, respectively losing
conditions of G� H. For x ∈ C∞(A⊥‖B),

x ∈ WG�H iff x1 /∈ LG =⇒ x2 ∈ WH , and

x ∈ LG�H iff x2 /∈ LH =⇒ x1 ∈WG .

Proof. Letting x ∈ C∞(A⊥‖B),

x ∈WG�H iff x ∈WG⊥‖H
iff x1 ∈WG⊥ or x2 ∈WH

iff x1 ∈ LG or x2 ∈WH

iff x1 /∈ LG =⇒ x2 ∈WH .

The other part is proved similarly. �

9 The Bicategory of Winning Strategies

We can again follow Joyal and define strategies between games now with win-
ning/losing conditions: a (winning) strategy from G, a game with winning/losing
conditions, to another H is a (winning) strategy in G� H = G⊥‖H . We com-
pose strategies as before. We show that the composition of winning strategies is
winning.

Lemma 8. Let σ be a winning strategy in G⊥‖H and τ be a winning strategy
in H⊥‖K. Their composition τ�σ is a winning strategy in G⊥‖K.

Proof. Suppose x ∈ C∞(T�S) is +-maximal. The event structure T�S is ob-
tained as the projection of S × T � Syn to the set of ‘visible’ events V . Hence
the down-closure [x] in S×T � Syn forms a configuration [x] ∈ C∞(S×T � Syn).
By Zorn’s Lemma we can extend [x] to a maximal configuration z ⊇ [x] in
C∞(S × T � Syn) with the property that all events of z \ [x] are synchroniza-
tions of the form p with max (p) = (s, t) for s ∈ S and t ∈ T . Then, z will be
+-maximal in C∞(S × T � Syn) with

σ1Π1z = σ1Π1[x] & τ2Π2z = τ2Π2[x] . (1)

By Lemma 7,

Π1z is +-maximal in S & Π2z is +-maximal in T .

As σ and τ are winning,

σΠ1z ∈ WG⊥‖H & τΠ2z ∈WH⊥‖K .



312 G. Winskel

Now σΠ1z ∈WG⊥‖H expresses that

σ1Π1z /∈ LG =⇒ σ2Π1z ∈WH (2)

and τΠ2z ∈WH⊥‖K that

τ1Π2z /∈ LH =⇒ τ2Π2z ∈WK , (3)

by Proposition 1. But

σ2Π1z ∈WH =⇒ σ2Π1z /∈ LH (4)

as WH and LH are disjoint. Moreover, σ2Π1z = τ1Π2z. So (2), (3) and (4) yield

σ1Π1z /∈ LG =⇒ τ2Π2z ∈WK .

By (1)
σ1Π1[x] /∈ LG =⇒ τ2Π2[x] ∈ WK ,

i.e. from the definition of τ�σ,

(τ�σ)1 x /∈ LG =⇒ (τ�σ)2 x ∈WK

in the span of the composition τ�σ. Hence τ�σ x ∈ WG⊥‖K whenever x is a
+-maximal configuration of T�S, ensuring τ�σ is a winning strategy. �

For a general game with winning/losing conditions (A,W,L) the copy-cat strat-
egy need not be winning:

Example 4. Let A consist of two events, one +ve event ⊕ and one −ve event
�, inconsistent with each other. Take as winning conditions the set W = {{⊕}}
and as losing conditions the set L = {{�}}. The event structure CCA:

A⊥ � ���

��
��
��

⊕

��
��
��

A

⊕ �����

To see CCA is not winning consider the configuration x consisting of the two −ve
events in CCA. Then x is +-maximal as any +ve event is inconsistent with x.
However, x1 /∈ L while x2 /∈ W , failing the winning conditions of (A,W,L) �
(A,W,L). �

Each event structure with polarityA possesses a ‘Scott order’ on its configura-
tions C∞(A):

x′ � x iff x′ ⊇− x ∩ x′ ⊆+ x .

Above we use the special inclusions

x ⊆− y iff x ⊆ y & polA(y \ x) ⊆ {−} , and

x ⊆+ y iff x ⊆ y & polA(y \ x) ⊆ {+}
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for x, y ∈ C∞(A). A necessary and sufficient for copy-cat to be winning w.r.t. a
game (A,W,L):

∀x, x′ ∈ C∞(A). if x′ � x & x′ is +-maximal & x is −-maximal,

then x ∈ L or x′ ∈W .
(Cwins)

Lemma 9. Let (A,W,L) be a game with winning/losing conditions. The copy-
cat strategy γA : CCA → A⊥‖A is winning iff (A,W,L) satisfies (Cwins).

Proof. It can be shown that

z ∈ C∞(CCA) iff z = {1} × x ∪ {2} × x′ with x′ �A x ,
for x, x′ ∈ C∞(A)—see Lemma 54 in the Aarhus notes [1]. In this situation
z is +-maximal iff both x is −-maximal and x′ is +-maximal. Thus (Cwins)
expresses precisely that copy-cat is winning in (A,W,L) � (A,W,L). �

For race-free games we can simplify (Cwins), the condition for copy-cat to be
winning. Copy-cat is a winning strategy for a race-free game iff no maximal
configuration of the game is neutral.

Proposition 2. Assume A is a race-free event structure with polarity. For a
game (A,W,L), the property (Cwins) holds iff x ∈ W ∪ L for all maximal
configurations x ∈ C∞(A).

Proof. For x, x′ ∈ C∞(A), assume

x′ � x & x′ is +-maximal & x is −-maximal.

As x′ ⊇− x∩ x′ ⊆+ x, there are covering chains associated with purely +ve and
−ve events from x ∩ x′ to x and x′, respectively:

x ∩ x′ +−−⊂ · · · +−−⊂ x ,

x ∩ x′ −−−⊂ · · · −−−⊂ x′ .

If one of the covering chains is of zero length then so must the other be—
otherwise we contradict one or other of the maximality assumptions. On the
other hand, if both are nonempty, by repeated use of (Race-free) we again
contradict a maximality assumption, e.g.

y1 −−⊂
+

x1 ∪ x′1 −−⊂
+ · · · −−⊂

+
x ∪ x′1

x ∩ x′

−−
⊂−

−−⊂
+

x1

−−
⊂−

−−⊂
+ · · · −−⊂

+
x

−−
⊂−

shows how a repeated use of (Race-free) contradicts the −-maximality of x. We
conclude that both covering chains must be of zero length, making x = x∩ x′ =
x′. As configurations which are both + and −-maximal are simply maximal,
the property (Cwins) now expresses that all maximal configurations are either
winning or losing. �
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We can now refine the bicategory of strategies Games to the bicategory
WLGames with objects G,H, · · · , games with winning/losing conditions satis-
fying (Cwins), and arrows winning strategies G + ��H; 2-cells, their vertical and
horizontal composition is as before. Via the constructions of Section 8, the bi-
category is rich in categorical structure, and is in particular monoidal-closed. Its
restriction to deterministic strategies yields a bicategory equivalent to a simpler
order-enriched category.

10 Games with Imperfect Information

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“paper”).
The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP , the event structure with
polarity

r1⊕

��
��
��
��
��

�	
�	

�	
�	

�	
� r2


�

�

�

�

�

�	
�	

�	
�	

�	

s1⊕ �������������� ⊕ p1 s2� �������������� � p2
comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. What are the win-
ning/losing conditions? A reasonable choice is to take the winning and losing
configurations (for Player) to be given by

W = {{r1, s2}, {s1, p2}, {p1, r2}} and L = {{s1, r2}, {p1, s2}, {r1, p2}} .
All other configurations are neutral, neither winning nor losing.

In this game it turns out that no participant has a winning strategy, which
agrees with our informal understanding of the game “rock, scissors, paper.”
However on closer inspection there is a mismatch between the possible strategies
allowed in our idealised mathematical and those of the real game. To make the
mismatch clearer, let us bias the game in favour of Player by making the empty
configuration winning, i.e. now ∅ ∈ W . In this case there is a winning strategy
for Player, viz. await the move of Opponent and then beat it with a dominant
move. Explicitly, the winning strategy σ : S → RSP is given as the obvious map
from S, the following event structure with polarity:

r1⊕

��
��
��
��
��

�	
�	

�	
�	

�	

s1⊕ �������������� ⊕ p1 � s2

���� � � � � � � � � � � � � � � � �


�

�

�

�

�

�	
�	

�	
�	

�	

p2�

���� � � � � � � � � � � � � � �
�������������� � r2

���� � � � � � � � � � � � � � �
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But this strategy hardly enters into the spirit of “rock, scissors, paper” where
the participants are intended to make their moves independently. The problem
with the game RSP as it stands is that it is a game of perfect information
in the sense that all moves are visible to both participants. This permits the
winning strategy above with its unwanted dependencies on moves which should
be unseen by Player. To adequately model “rock, scissors, paper” requires a
game of imperfect information where some moves are masked, or inaccessible,
and strategies with dependencies on unseen moves are ruled out.

We extend concurrent games to games with imperfect information. To do so
in way that respects the operations of the bicategory of games we suppose a
fixed preorder of levels (Λ,�). The levels are to be thought of as levels of access,
or permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

An Λ-game (G, l) comprises a game G = (A,W,L) with winning/losing con-
ditions together with a level function l : A→ Λ such that

a ≤A a′ =⇒ l(a) � l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ : S → A for
which

s ≤S s′ =⇒ lσ(s) � lσ(s′)

for all s, s′ ∈ S.
For example, for “rock, scissors, paper” we can take Λ to be the discrete

preorder consisting of levels 1 and 2 unrelated to each other under �. To make
RSP into a suitable Λ-game the level function l takes +ve events in RSP to level
1 and −ve events to level 2. The strategy above, where Player awaits the move
of Opponent then beats it with a dominant move, is now disallowed because it is
not a Λ-strategy—it introduces causal dependencies which do not respect levels.
If instead we took Λ to be the unique preorder on a single level the Λ-strategies
would coincide with all the strategies.

Games with imperfect information are central to the semantics of Hintikka
and Sandu’s independence-friendly (IF) logic in which special quantifiers restrict
those strategies permitted to establish an assertion [14]. A recent paper [15],
building on a concurrent-game semantics of predicate calculus [6], proposes a
compositional semantics for a variant of IF logic in which assertions of IF logic
denote concurrent games with imperfect information.

10.1 The Bicategory of Λ-Games

The introduction of levels meshes smoothly with the bicategorical structure on
games.

For a Λ-game (G, lG), define its dual (G, lG)⊥ to be (G⊥, lG⊥) where lG⊥(a) =
lG(a), for a an event of G.
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For Λ-games (G, lG) and (H, lH), define their parallel composition (G, lG)‖
(H, lH) to be (G‖H, lG‖H) where lG‖H((1, a)) = lG(a), for a an event of G, and
lG‖H((2, b)) = lH(b), for b an event of H.

A strategy between Λ-games from (G, lG) to (H, lH) is a strategy in (G, lG)⊥‖
(H, lH).

Proposition 3
(i) Let (G, lG) be a Λ-game where G satisfies (Cwins). The copy-cat strategy
on G is a Λ-strategy.
(ii) The composition of Λ-strategies is a Λ-strategy.

Proof. (i) The additional causal links introduced in the construction of the copy-
cat strategy are between complementary events in G⊥ and G, at the same level
in Λ, and so respect �.

(ii) Let (G, lG), (H, lH) and (K, lK) be Λ-games. Let σ : G + ��H and τ : H + ��K
be Λ-strategies. We show their composition τ�σ is a Λ-strategy.

It suffices to show p � p′ in T�S implies lG⊥‖Kτ�σ(p) � lG⊥‖Kτ�σ(p′).
Suppose p � p′ in T�S with max (p) = e and max (p′) = e′. Take x ∈ C(T�S)
containing p′ so p too. Then, referring to Proposition 4,

e �
⋃
x e1 �

⋃
x · · ·�⋃

x en−1 �
⋃
x e

′

where e, e′ ∈ V0 and ei /∈ V0 for 1 ≤ i ≤ n − 1. (V0 consists of ‘visible’ events
of the stable family, those of the form (s, ∗) with σ1(s) defined, or (∗, t), with
τ2(t) defined.) The events ei have the form (si, ti) where σ2(si) = τ1(ti), for
1 ≤ i ≤ n− 1.

Any individual link in the chain above has one of the forms:

(s, t) �
⋃
x (s′, t′) , (s, ∗) �

⋃
x (s′, t′) ,

(∗, t) �
⋃
x (s′, t′) , (s, t) �

⋃
x (s′, ∗) , or (s, t) �

⋃
x (∗, t′) .

By Lemma 6, for any link either s �S s
′ or t �T t

′. As σ and τ are Λ-strategies,
this entails

lG⊥‖Hσ(s) � lG⊥‖Hσ(s′) or lH⊥‖Kτ(t) � lH⊥‖Kτ(t′)

for any link. Consequently � is respected across the chain and lG⊥‖Kτ�σ(p) �
lG⊥‖Kτ�σ(p′), as required. �

W.r.t. a particular choice of access levels (Λ,�) we obtain a bicategory
WLGamesΛ. Its objects are Λ-games (G, l) where G satisfies (Cwins) with
arrows the Λ-strategies and 2-cells maps of spans. It restricts to a sub-bicategory
of deterministic Λ-strategies, which as before is equivalent to an order-enriched
category.

We can shift between different access levels. Let r : (Λ,�) → (Λ′,�′) be
a monotonic function between preorders of levels. By composition with r a Λ-
game (G, l) becomes a Λ′-game (G, r ◦ l), giving rise to a (pseudo) functor from
WGamesΛ to WGamesΛ′ . Provided r is injective, the functor has a right
adjoint from WGamesΛ′ to WGamesΛ.
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Reflections on a \m/ Time with Dexter Kozen

Kamal Aboul-Hosn

Meridian America Inc.
110 Greene Street Suite 407

New York, NY 10012
kamal@sooloos.com

“Choose as an advisor someone you can see yourself being in ten years.” Those
were the words spoken to me by a fellow graduate student at Cornell University.
It is a task that is easier said than done. How do I know who I want to be
in ten years, let alone find someone who embodies those qualities? Through
an incredible set of circumstances, I ended up working with an advisor who
represented the person I wanted to be in ten years, Dexter Kozen. In the four
and a half years I had the privilege of working with Dexter, I learned many
lessons I have carried with me through graduate school and beyond to my life
as a software engineer and manager.

My time with Dexter started with af teaching assistant position for his Theory
of Computing class. Originally, I was a TA for the non-honors version of the class
under a different professor. However, the honors version Dexter was teaching had
a higher enrollment than expected, so they needed a TA to move from one class
to the other. I was the one volunteered to move. I was not too excited about
switching positions. As a first-semester graduate student who already felt out of
his league at a university like Cornell, the idea of switching a couple of weeks
into the semester to the honors version of a class was daunting. Nevertheless,
TAing the course led to taking Dexter’s Dynamic Logic course the next semester
led to a research project in that class led to Dexter becoming my advisor.

The first quality that struck me about Dexter was his hands-off nature. In
the Theory of Computing class, he’d leave coming up with a specific grading
guide to the teaching assistants. As a graduate student doing work with him, it
was often up to me to have the discipline to get the work done on research or
papers that had deadlines. Dexter was never the kind of person to stand over my
shoulder watching my every move. Instead, he would provide high-level guidance
and expect me to carry the work out. Don’t mistake the hands-off approach for
a lack of interest; if I had questions at any time, he was always available. For
a student trying to figure out how this whole research thing works, it can be
overwhelming to have that much responsibility placed on you. However, the trial
by fire encouraged me to develop the skills necessary to survive in a technical
field, whether it be in academia or industry.

Seeing a hands-off approach from the other side when I became a manager
gave me even more appreciation for how Dexter treated me as his graduate
student. At the heart of this approach is trust. Dexter had to trust me to devote
time to the projects and papers we were working on. He had to trust me to be
thorough and rigorous in my work. And he had to trust me to seek his help

R.L. Constable and A. Silva (Eds.): Kozen Festschrift, LNCS 7230, pp. 318–321, 2012.
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when I had questions. That is a lot of trust to put in someone you barely know.
It is the same trust I placed in each of my eight team members. When as an
advisor or manager you place that trust in others from the beginning, you find
out very quickly who are the people who are going to excel on their own and
who are the ones who need more assistance. And you push those who have a
natural inclination to excel to work even harder, for they understand the burden
being placed on them. Dexter’s trust brought out my best qualities and is the
way I will always bring out the best qualities in those I work with.

As I mentioned earlier, it would be a mistake to think his hands-off approach
meant Dexter was not interested. With its foundation in trust, the hands-off
approach might even make one more interested; not performing up to the stan-
dards of a hands-off manager or advisor reflects a violation of the trust placed.
I believe I only violated this trust on a couple of occasions, although you’ll have
to ask Dexter to confirm. I vividly remember one of the times my work did not
match Dexter’s standards. We were in the process of writing a paper to submit
to the 2006 International Conference on Mathematics of Program Constructs
(MPC). The paper required a lot of background information and definitions to
set up the conclusions. However, I used a lot of terms that I did not define. I took
what I thought was a nearly-complete paper to Dexter’s office. He quickly found
a lot of terms that were not defined and started marking them with his pen.
As he found more, he got visibly frustrated, saying “Kamal, here’s another one.
You can’t just use these terms without defining them.” Dexter rarely let that
kind of frustration show. When he did, I knew he was serious. Dexter taught me
that a big part of being passionate about the work others are doing is getting
frustrated occasionally and taking their errors personally.

Dexter’s passion extended beyond his work and into his hobbies. I was for-
tunate enough to share in his musical interests while the drummer for the Joel
Baines Trio, in which Dexter played guitar. I’m not sure there are many advisors
who ask their students to join them in a rock band! Life outside of the office
meant a relationship different from the typical advisor/advisee relationship for
Dexter and me. We both had a love of music and overlapping music tastes, which
is exactly what you want in a band. The vibe of band rehearsals and shows was
much more relaxed than times in the office. That’s not to say time in the office
was stressful; it’s just that we were both enjoying our passion for music, which
had no deadlines, no proofs that needed to be completed, and no attempts to
squeeze twenty pages of material into the fifteen-page limit for a conference pa-
per. Instead, we spent time in a basement learning new songs that we all enjoyed,
waiting for that moment when the song finally clicked and we could play it well.
Often, those moments included a nod and a smile from Dexter as he strummed
away on his guitar.

My favorite memories of my time in Ithaca are playing in the band with
Dexter. In particular, I remember moments like playing the Computer Science
Department Holiday Party in 2006. We had been asked to play an anniversary
party for the department a few months earlier, but were abruptly stopped after
two songs at the show because we were too loud. We were all unhappy about not
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getting to play the full show we had planned. However, the holiday party was to
be a much more appropriate venue for our band and its loud rock ’n roll. The
rehearsal prior to the holiday party, we planned a little joke to start our show. We
said that we had changed our music style in response to the anniversary party.
After Dexter announced it, we started playing a slow doo-wop beat. The look of
disappointment on the faces of my fellow grad students was obvious. After about
30 seconds of our new direction, we quickly broke into a wall of sound with “All
The Small Things” by Blink-182. The dancing started and everyone had a great
time. It remains for me one of the best shows I’ve ever been a part of.

Fig. 1. The Joel Baines Trio Perform at the Cornell Computer Science Department
Holiday Party 2006. From left to right: Lee Armstrong (guest guitarist), Dexter Kozen
(guitar, vocals), Joel Baines (bass, vocals), Kamal Aboul-Hosn (drums). Image courtesy
of Stephanie Meik.

In sharing in music with Dexter, I learned another lesson from him: allow
yourself the time to indulge in your hobbies. It has been my experience that
the people who are passionate about their work are also passionate about their
hobbies. For Dexter and me, it was making music. (And rugby for Dexter. That’s
one of those things I don’t think my body could handle.) Dexter and I would
often chat music before diving into a discussion about our latest proof. His taking
an interest in me life allowed me to connect to him in a way that made working
together more personal. I am thankful that Dexter not only took an interest in
my favorite hobby, but that he had a similar passion we were able to share.

Vicky Weissman was right, “choose as an advisor someone you can see yourself
being in ten years.” Maybe that needs to be refined to say “choose as an advisor
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someone you want to be in ten years.” That doesn’t necessarily mean choose
an advisor whose career you want. It means choose an advisor who you respect
as a human being. A person who exemplifies the qualities you one day hope to
possess, both inside of the office and out. I am extremely fortunate and honored
to have found the person I wanted to be in Dexter Kozen. It is obvious that he
has taken the effort to be someone others could look up to. His lessons of trust,
passion, and an enjoyment of life are ones we should all aspire to demonstrate as
researchers in the field of Computer Science and as mentors to future Computer
Scientists. Thank you, Dexter.



Two Three Pages Papers

Krzysztof R. Apt

CWI, Amsterdam and University of Amsterdam, The Netherlands

Dexter was my manager during the first 8 months or so of my one year stay at the
IBM Research Center at Yorktown Heights in the mid eighties. Our interaction
in terms of scientific output was very slim — it consisted of just a single paper,
titled “Limits for automatic verification of finite-state concurrent systems.” The
paper appeared in 1986 in Information Processing Letters and had just 3 pages.
Still, it has 275 citations on Google scholar, so more than 90 citations per page.
I believe it is the best per page citation ratio for both of us.

I would like to mention here a short story that illustrates Dexter’s style of
being a manager. During my stay I invited for a visit my twin sister from Poland,
which was then a communist country. To arrange it was not easy. One had to
find a person with American nationality who would vouch for her financially, also
in the case of medical problems. I summoned my courage, walked into Dexter’s
office and started to explain the problem. Before I reached the question whether
he would be willing to vouch financially for my sister, he interrupted me and
just asked: “where should I sign?”. And that was all. I am forever grateful to
Dexter for this, even though probably he completely forgot about it.

Perhaps what helped was that for Dexter Eastern Europe was not an empty
concept but a place where some of his colleagues, like Andreka, Nemeti, and
Tiuryn lived and worked. Thanks to Dexter my sister is now in possession of a
historic photo I made her on the top of one of the Twin Towers.

During my stay at IBM Dexter decided to move to Cornell. Even though
we did not maintain scientific contacts, I was watching with interest ‘from the
sidelines’ Dexter’s fine work on Kleene algebras. So I was particularly happy
when he reacted positively to my invitation to contribute a paper to the new
ACM Transactions on Computational Logic (ToCL) that I launched in 1999.
Dexter’s paper “On Hoare Logic and Kleene Algebra with Tests” appeared in
the first issue. I may now reveal that I was one of the reviewers.

Strangely enough, the paper caused some problems for me. Namely, once I
posted it on the website of ToCL somebody promptly contacted me claiming that
he simplified a proof of one of Dexter’s results. I suggested to publish his proof
as a letter. However, in contrast to Dexter’s crystal clear paper that I could read
and understand without difficulties, the author wrote his note in such a cryptic
and convoluted way, that I was totally lost. So I involved Dexter. In total 34
emails followed. (I still keep them.)

Fortunately for me, Dexter not only took the trouble to understand what
the author wrote (which was really not obvious) but completely rewrote his
arguments. This led to a short 3 pages paper of him and the author, that also
appeared in the first issue of ToCL.

Dexter, many happy returns on your 60th birthday!
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A Tribute from the Band

John Parker, Joel D. Baines, Paul Miller, and Julia Miller

Cornell University

Dexter has played music for most of his life and playing music is something that
gives him great enjoyment. As a member of the band, Dexter has always been
the organizer and musical director. Dexter is multitalented. He can play guitar,
piano, and sing, all well enough to be done in public. As fellow band members
we know when things are going well during a set because Dexter will have a huge
grin on his face. Recently, Dexter has added Rapping to his repertoire. He has
a really stellar performance that has yet to be presented to an audience!

Dexter is unabashedly and unequivocally exuberant for music. His kid like
charm and enthusiasm has always been an inspiration to both his fellow band
members and the audience. Dexter’s enthusiasm for music makes it a blast to
get together for practice and gigs. In addition to playing in the band, Dexter’s
enthusiasm stretches to acting as chief ’roadie’. Dexter trucks all of our equip-
ment around in his van. This is a real effort as he has to load the van before the
gig and then unload it when he gets home. For anyone who has ever wondered
what that it is like - let me tell you it’s a lot of work. Most guitar amps weigh at
least 50-60 lb so loading and unloading is hard manual labor. From all of us in
the band, Happy 60th birthday Dexter. I think that I speak for all the members
of the current band and past bands in saying that it is a total blast to play music
with you! Here’s a toast to you and to playing music with you for many more
years.

All the best.The Band.
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Dexter Kozen: An Appreciation

Joseph Y. Halpern

Computer Science Department
Cornell University

Ithaca, NY 14853, USA
halpern@cs.cornell.edu

I have known Dexter for 30 years, which, of course, means that I was 9 when I first
met him. At that time, Dexter was already “the man”. Although he was only a
few years ahead of me, he had already made his name by independently defining
the notion of alternating Turing machines, a deep contribution to complexity
theory that made it possible to connect time and space complexity. The results
were viewed as so significant that it was already being taught in a graduate
course on complexity theory that I attended.1 Of even more interest to me at
the time was Dexter’s work on modal logic, since a large part of my thesis was on
dynamic logic. Finding a sound and complete axiomatization for dynamic logic
had been an open problem for many years. Krister Segerberg had suggested an
obviously sound axiomatization, but couldn’t prove it complete. Rohit Parikh
[7] showed that it was indeed complete, but his proof was rather complicated.
Dexter then came up with a much simpler proof, one that got at the essence of
Rohit’s ideas; this version was published as [6]. The proof is truly beautiful. I
have taught it often, and used the ideas in a number of subsequent papers (e.g.,
[3,4]).

This was my first introduction to Dexter’s ability to see into the heart of a
problem. Perhaps the best-known example is Dexter’s work on the µ-calculus.
Vaughan Pratt [8] had earlier suggested a logic with fixed-point operators. Dex-
ter’s version [5] was more elegant, and is the one that everyone focuses on these
days.

I also soon learned about Dexter’s breadth. Besides complexity theory and
modal logic, he also produced major results on algebra, such as the complexity of
the theory of real closed algebraic theories [1]. I remember visiting IBM Yorktown
Heights in the mid 1980s; Dexter was working there at the time. I mentioned
to him some graph-theoretic problems I was working on. The rest of the day,
I could see Dexter scratching away at a notepad, thinking about the problems.
(He is still scratching away at notepads, although the notepad and the problems
occupying him are no doubt different.)

When I moved to Cornell in 1996, I saw a different side of Dexter. Dexter
is a true department stalwart. He is well known to be a tremendous teacher.
He can also always be counted on to play hockey or play music at a depart-
ment function. (On top of everything else, Dexter is a terrific musician—I am

1 Ashok Chandra and Larry Stockmeyer had also investigated alternation; they joined
forces to produce a very high-cited journal paper [2].
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jealous!) Now that I’m department chair, I appreciate Dexter’s contributions to
department life even more. Each year I ask department members what courses
they would like and be willing to teach. Most people mention two courses; some
people may even mention three. Dexter is willing and able to teach just about
anything: theory courses, programming language courses, all of our introductory
programming and data structures courses, the basic graduate courses in theory
and programming languages, and, of course, specialty courses in his own area.
Indeed, not only is he willing to teach them in principle, he has in fact taught
just about all of them.

When one of our faculty members had a sudden emergency the night before
the final exam in his core undergraduate course (a course with over 60 students),
with the final exam only partially completed (yes, it was the night before the
final . . . ), he called on Dexter. Dexter stayed up to the wee hours of the morning
preparing the final, and helped grade it. I think this incident really gives a sense
of Dexter—both the way he came through for someone else in an emergency,
and that he was the one that was turned to in the first place.

Thanks for everything, Dexter.
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Dexter Kozen: A Winning Combination  
of Brilliance, Depth, and Elegance 

David Harel 

This is a somewhat non-standard piece about Dexter Kozen, longtime colleague and 
friend. I am sure that the praise of Dexter’s research will have been sung by many of 
the people contributing to this volume. I could probably have added my own 
perspective, talking at length about the enormous impact of his most profound work. 
For example, the wonderful paper on alternation influenced my work on seemingly 
unrelated topics years later, in many unexpected ways.1  

However, on second thoughts, I decided to do it a little differently. I’m going to tell 
you why I decided not to write a paper for this volume in honor of Dexter, but instead 
to write a laudatio. A paper would have been easy, right? We all do research and 
write papers, and it shouldn’t be too much of a problem to select a fitting one for the 
occasion. So, why not?  

Well, there are two reasons: The first is that any paper I could have written, which 
would have been in some way relevant to a volume in honor of Dexter Kozen, would 
have fallen short, in the following sense: Dexter would have read it and would 
probably have thought:  “Oh yea, that’s kind of interesting, and yes, I can see how 
those proofs go; and, by the way, here is how to continue the work and get far 
stronger results, and in a much nicer way”. (This is the best case, of course; it could 
be a lot worse. Dexter sees errors, gaps in proofs, shaky arguments, etc., very 
quickly…) 

The second reason is a lot more acute. I simply can’t write a paper befitting this 
volume, because I stopped doing theory of computation almost twenty years ago. 
Why?  Well, that’s an easy one: It’s Dexter. He’s the one to blame.  

Let me explain: Dexter Kozen is absolutely amazing! IMHO, he is one of the most 
brilliant theoretical computer scientists of our generation. But it’s not just his 
cleverness and depth and the wonderful work he’s been able to produce, but also the 
unparalleled beauty of his thinking and of the way he goes about doing his research. 
A work session with Dexter was always a combination of exhilaration and frustration. 
He had the uncanny ability to bring in, out of the blue, unexpected notions from 
seemingly unrelated branches of mathematics – often from algebra or topology – 
which either you’d have never heard of, or you’d have long-forgotten. And these then 
turned out not only to be relevant but to make everything you wanted to do fall into 
place, and in a concise, exotically elegant and often stunning way.2 Such collaboration 

                                                           
1 As is well-known, Dexter’s work on alternation appeared initially in his singly-authored 

FOCS`76 paper, independent of the Chandra-Stockmeyer paper that was published back-to-
back with it in the same volume; the two later became the famous combined, triply-authored 
J.ACM version. 

2 For me, an excellent example of this was his introduction of ultra-filters into our work on 
dynamic logic. 
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was, of course, exciting and extremely fruitful, but could also be frustratingly 
depressing. By the way, Dexter would later go off on beautiful tangents, open up new 
avenues, ask new questions and then obtain more, and stronger, results. At that point 
most of us simply give up… 

As a result, I figured that someone who produced the most succinct and beautiful 
proof imaginable of completeness for PDL3, who went on to provide a virtuosic 
treatment of the far more challenging μ-calculus, who placed logics of programs in an 
elegant Kleene-like algebraic setting, and on and on and on (and all this without 
mentioning his fundamental contributions to complexity theory, and a whole slew of 
more recent work that I haven’t been able to follow); such a person causes one to 
want to become a taxi driver….   

No way could I do theory that would even come close to what Dexter was able to 
produce in his seemingly effortless way, out of his sleeve.  So I quit. Not to become a 
taxi driver, but to do different things, which require far less of the qualities that 
Dexter had in such amazing abundance. 

*  
What else can I say? Please accept my heartfelt wishes, Dexter, for many more 
fruitful years of scientific productivity, and health, joy and bliss. Enjoy your family 
and enjoy life!   

I am proud to know you and to have been able to work with you and to learn from 
you. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
3 Dexter’s work was based on ideas from Rohit Parikh’s original proof of the completeness of 

the Segerberg axioms for PDL; the two ended up publishing jointly. 



Making the World a Better Place

John Hopcroft

Cornell University

The papers in this book detail Dexters research contributions, which are pro-
found. I would like to highlight another contribution Dexter has made that affects
us all in the department every day.

Dexter has a deep concern for the well being of our department. He can always
be counted on to take the steps necessary to create a smooth running arena where
students can flourish. He cares about their success and makes himself available
to help them in any way he can. If something needs doing, he volunteers and
gets the job done. He’s a master at cutting red tape. He will teach whatever
the department needs. Dexter goes for quality in everything he does. When he
evaluates a person, he reads the persons paper and asks what the individual has
done, not how many papers were published.

I feel that, overtime, Dexter’s values have become absorbed by the department
and are reflected in quality work, respect for others and a sincere collegiality. He
is the professor you hope for, whether as a student or a colleague.
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Timesharing Dexter

Susan Landau�

My husband Neil Immerman returned from the 1986 STOC meeting with an
interesting proposition. Juris Hartmanis and Dexter Kozen had a small pocket
of funds, and they proposed that the two of us visit the Cornell Computer Science
Department for a week.

It sounded delightful but we had a complication: our new son, who was all of
four months old. We decided to time-share Dexter and split child care (using the
rule that during the day, he who was not with the baby would be with Dexter).
The Kozens improved upon this, offering that we could stay at their house. So
while one of us would be talking research with Dexter in his office, the other
would be taking care of the baby while visiting Fran at home.

Thus began Dexter’s and my adventure into polynomial decomposition. The
week before I arrived at Cornell, I had been thinking about polynomial de-
composition, that is, the issue of finding a non-trivial solution to the problem
f(x) = g(h(x)) (non-trivial means that both g(x) and h(x) are of degree greater
than 1). Barton and Zippel had a solution for fields of characteristic 0, noting
that if f(x) = g(h(x)), then h(x) − h(y) divides f(x) − f(y). They used this
— and a refinement, under the assumption that h(0) = 0, h(x)|(f(x) − f(0))
(without loss of generality, one can assume that h(0) = 0) — to find potential
h(x) [2]. Their algorithm was exponential in n, the degree of f(x).

Even with the lack of sleep that accompanies having a baby, I thought I
could do better. Lüroth’s theorem states that if k is an arbitrary field, the fields
between k(f(x)) and k(x) are in one-to-one correspondence with the decompo-
sitions of f(x). Each field between k(f(x)) and k(x) can be expressed as k(h(x))
for some composition factor of f(x) [7].

I knew how to find certain subfields of a field rather quickly [6] and I thought
I could apply that technique. But my potential solution ran into a difficulty.
Instead of being kept awake by our son, I spent my first night in Ithaca awake
puzzling over polynomial decomposition and blocks of roots of polynomials. That
Monday afternoon I talked with Dexter about the problem, my approach, and
the difficulty with it. Dexter hadn’t been thinking about polynomials, decompo-
sition, or subfields, but in his inimitable fashion, Dexter immediately got very
excited. We got to work.

Let me provide some notation and background. Let k be a field of arbitrary
characteristic and let f(x) be a monic separable polynomial (no repeated roots)
of degree n with coefficients in k. Let K be the splitting field of f(x) over k,
the smallest field containing all the roots of f(x) over k. Futhermore let G be
the Galois group of f(x) over k, the set of permutations of the roots that hold
the base field k fixed.

� Visiting Scholar, Department of Computer Science, Harvard University.
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Evariste Galois showed that there is a one-to-one correspondence between
the subgroups of G and the subfields between K and k. (He used this to show
that roots of arbitrary polynomials of degree five or greater are not necessarily
expressible in radicals.) From previous work [6], as long as f(x) was irreducible
over a field of characteristic 0 (and k[x] had a factoring algorithm), I had an
efficient method for for computing the fields that lay between k and k[x]/f(x).

My work relied on block decomposition. If G is a permutation group on Ω =
{α1, α2, . . . , αn}, the roots of f(x) over k, we let Gα be the subgroup of G that
fixes α. The fields between k and k[x]/f(x) — one of which was k[x]/h(x) —
correspond to subgroups of Gα. Finding intermediate fields could give a decom-
position. But decomposable polynomials may have repeated roots, and Galois
fields don’t capture this situation.

I thought our week in Ithaca would involve Neil in Dexter’s office in the morn-
ings, me there in the afternoons, while the evenings would have Fran, Dexter,
Neil and me at home, visiting. I had that partially right. Fran, Dexter, Neil and
I were at home in the evenings, and sometimes we all got to visit (mostly over
dinner). But on decomposition Dexter was like a dog with a bone: toss the re-
peated roots problem in the air, let it land, grab it, worry it some more, toss it
again, and keep it going. He and I spent the evenings puzzling over, pulling at,
pressing on decomposition.

If the approach of Galois fields wouldn’t allow repeated roots, generalizing
the notion of blocks would.

Let k be a field of arbitrary characteristic and let f(x) be a monic polynomial
in k[x] of degree n = rs, with f(x) not necessarily irreducible or separable. Let
K be the splitting field of f(x) over k, and let G denote the Gaiois group of
f(x) over k. Dexter and I defined a block decomposition for f(x) a multiset A of
multisets of elements of k such that,

– f(x) = ΠA∈ΔΠα∈A(x− α);
– if α ∈ A ∈ Δ and β ∈ B ∈ Δ, and σ ∈ G is such that B = σ(A) = {σ(ρ)|ρ ∈
A}.

A block decomposition Δ is an r× s block decomposition if |Δ| = r and |A| = s
for all A ∈ Δ. This generalization of block decomposition to multisets meant
that f(x) could have repeated roots. Dexter was very happy (the bone stopped
being tossed in the air quite so often). This definition enabled Dexter and me
to generalize the subfield issue to handle reducible polynomials and polynomials
with repeated zeros. Before I present our structure theorem, I need to provide
some additional notation for you to gnaw on:

Let:

f(x) = xn + ars−1x
rs−1 + . . .+ a0, with ai, 0 ≤ i ≤ rs − 1;

g(x) = xr + br−1x
r−1 + . . .+ b0, with bj , 0 ≤ j ≤ r − 1; and

h(x) = xs + xs−1x
s−1 + . . .+ c0, and with ck, 0 ≤ k ≤ s,∈ k.

Furthermore let cmj denote the jth elementary symmetric function on m-element
multisets:
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– cmj = ΣB⊆A,|B|=jΠB, and
– cm = 1.

Dexter and I showed:

Theorem: Let f(x) ∈ k[x] be monic of degree n = rs. The following two
statements are equivalent:

– f(x) = g(h(x)) for some g(x) and h(x) in k[x] of degree r and s respectively.
– There is an r × s block decomposition Δ for f(x) such

that cjs(A) = cjs(B) ∈ k for all A,B ∈ Δ, O ≤ j <≤ s− 1 [5].
Without loss of generality we can assume that c0 = 0. With that assumption,

we get that if f(x) = g(h(x)), then f(x) and h(x) agree on their first r coef-
ficients. The calculation of the remaining coeffcients of h(x) falls out from the
simple recurrence equation for the ci. From h(x) we can determine g(x). (Be-
cause the system is overdetermined, we have to check that candidate g(x) and
h(x) actually lead to a decomposition.) Our algorithm decomposes f(x) in O(n3)
in general — a rather impressive improvement from the earlier exponential-time
algorithms. The algorithm works even faster if the underlying field supports Fast
Fourier Transform (O(n2 logn) steps) [5].

The bone had been fully gnawed upon. Dexter was delighted (as was I). There
was more to come.

My motivation in considering decomposition was because of its fundamental
role in computer algebra. But Dexter’s and my result turned out to have other
applications as well. In 1985 a cryptosystem was proposed based on polynomials
[3]. Because in composition polynomial degrees multiply (rather than add, as is
the case for polynomial multiplication), the thought was that perhaps composi-
tion could be an RSA-type cryptosystem based on polynomials.

The Kozen-Landau theorem shows that polynomial composition is not a good
candidate for such public-key systems. Recently I was told that in the main
Maple command “solve” for solving polynomial systems (and pretty much every-
thing else), the algorithm begins by attempting to decompose any polynomials
passed as input. This is because even while few polynomials are decomposable,
the decomposition method is sufficiently fast that it provides a big win when it
succeeds. The implementation is the Kozen-Landau technique [4].

There was yet another consequence of Kozen-Landau. The polynomial x4 +
x+1 is the smallest polynomial over GF (2) that has a non-trivial decomposition:
x4 + x + 1 = g(h(x)), with g(x) = x2 + x + 1 and h(x) = x2 + x. Sometime
after Neil and I left Ithaca and the Kozen domicile, Fran and Dexter retiled
their bathroom shower. They included a strip of 4 × 4 small green and white
tiles running along the wall; it is the cyclic multiplicative group of GF (16) as
represented by polynomials mod(x4 + x+ 1) generated by x:
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Even when he showers, Dexter can’t get away from decomposing polynomials!
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A Small Tribute

Anil Nerode

Cornell University

I have known and admired Dexter since the time long ago when Juris Hartmanis
was chairman of his PhD committee and I was a member. Shortly after he came
back to Cornell as a professor an occasion arose when he thought to ask why I
had not attended his qualifying exam. I told him that Juris had to because he
was chair, but that I avoided exams that were superfluous. I am not much on
“rites of passage”.

The originality, breadth, and depth of Dexters subsequent research in such
areas as Kleene algebras, automata theory, dynamic logic, and the mu calculus
has never ceased to amaze me.

Our main personal contact over the years has been through our common
membership on the three person PhD committees which guide our graduate
students to their degrees. There has been for many years an informal logic-related
group in mathematics and computer science. It has consisted of Richard Shore
and myself in Mathematics and Dexter Kozen and Bob Constable in computer
science, recently joined by Joseph Halpern. We have served as members of many
PhD committees in mathematics and in computer science, to the benefit of both
fields.

Dexter has been a principal contributor to a distinguished several decade
history of educating mathematical logicians with strong research credentials in
computer science and computer scientists with strong research credentials in
mathematics. May he have a long and productive future!
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Dexter Kozen’s Influence on the Theory

of Labelled Markov Processes

Prakash Panangaden

School of Computer Science, McGill University

In the Fall of 1985 Dexter and I both started at Cornell as new faculty members
in the celebrated Computer Science Department, home to luminaries such as
Juris Hartmanis, John Hopcroft, David Gries and Robert Constable. I was a
very new assistant professor but Dexter was already an acknowledged star with
celebrated contributions to several areas: algebra and complexity, decision pro-
cedures for real-closed fields [1], dynamic logic [2–4] and many other areas across
both tracks of theoretical computer science. I had no doctorate in computer sci-
ence, hardly any publications and no clearly defined research area. Early in the
term Dexter summoned me to his office and grilled me about work I was doing
on nondeterministic dataflow. After that meeting I needed several glasses of beer
to recover but a lasting friendship was sealed.

One of the first things Dexter did was to offer a series of informal lectures
on his work on the semantics of probabilistic programs and on probabilistic
PDL [5, 6]. I attended these lectures and was dazzled and bewildered. This
was not the probability theory I had seen being used in computer science in
those days; or for many years after! He plunged right into measure theory, σ-
algebras, Stone-type dualities and other things that I had never heard of. I
struggled to follow but with the pressing need to define my own research program
I concentrated more and more on concurrency theory, type theory, epistemic logic
and denotational semantics and could not spend time thinking about all the
things Dexter was explaining. It was a full decade later that those lectures had
their impact by which time I had been away from Cornell for several years.

Let me explain two key ideas that I learned subconsciously which influenced
me later. First, there is a striking Stone-type duality [7] between two kinds of
programming language semantics: the ordinary state transformation semantics
one sees in operational semantics or denotational semantics and the backward
flowing predicate-transformer semantics due to Dijkstra [8]. This duality was
discovered by Plotkin [9] and Smyth [10]. Dexter, influenced by suggestions made
by Plotkin, discovered an analogous duality in probabilistic semantics.

In order to sketch the ideas I will define the language used in the original
paper. We define the syntax as follows:

S ::== xi := f(x)|S1;S2|if B then S1 else S2|while B do S.

We assume that the program has a fixed set of variables x, say n distinct vari-
ables, and that they each take values in some measure space (X,Σ). In his first
paper [5], Dexter gives a state transformer semantics by assigning commands to
Markov kernels. Crucially, one can compose Markov kernels by integrations and
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one needs this for a compositional denotational semantics. The dual view is to
think of random variables being transformed backwards through the commands.
If the value of a random variable is given at some program point what is the
value before the preceding command? This is just the probabilistic analogue of
the predicate transformer point of view.

This point of view was explored extensively by the Oxford group in the early
1990s, see for example the recent book by Morgan and McIver [11].

Many years later I, working with Abramsky and Blute, was seeking quanti-
tative generalizations of the notion of relational composition and was seeking a
category that like Rel was compact closed but worked by combining functions
by integration instead of combining predicates by existential quantification. One
composes two binary predicates R(x, y) and S(x, y) by the simple formula

(R ◦ S)(x, y) = ∃z (R(x, z) ∧R(z, y)).

It seemed natural to think of a probabilistic relation as a joint distribution on
the product space X × Y but how does one compose them?

Eventually, I realized that the right gadgets were Markov kernels and I was
able to define a category of probabilistic relations [12]. If only I had remem-
bered Dexter’s lectures I would have saved months of time. I called this category
SRel and shortly afterwards discovered that Gı̀ry had developed a theory of
probability monads much earlier [13] and SRel is the Kleisli category of this
monad.

It still did not yield a category with all the properties of relations, but we
eventually realized that this is a feature not a bug, and we developed the theory
of nuclear ideals [14]. Once the category SRel was in place I was able to give a
simplified treatment of Dexter’s semantics and his duality, which I called Kozen
duality [15].

The most striking idea that I learned from Dexter is the analogy between
logic and probability: in fact the duality mentioned above is just an echo of this
underlying idea. This idea is best conveyed through the following table.

Classical logic Generalization
Truth values {0, 1} Probabilities [0, 1]

Predicate Random variable
State Distribution

The satisfaction relation |= Integration
∫

Just as the satisfaction relation, |=, links states and formulas to give truth values,
so the integral links distributions (generalized states) with random variables
(generalized formulas) to give numerical results (generalized truth values).

Around 1994 I began a long series of investigations into the theory of what I
called labelled Markov processes [16–26]. One of the contributions of this work
was the development of a metric analogue of bisimulation. We defined a metric,
or more precisely a pseudometric with probabilistic bisimulation as its kernel.
How could one do this? The construction is based on an idea that comes straight
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from Dexter’s analogy above. We defined a real-valued logic which, like an or-
dinary modal logic characterized bisimulation in the spirit of van Benthem and
Hennessy-Milner. Now we can define a distance between states s, t of a proba-
bilistic transition system by

d(s, t) = sup
f
|f(s)− f(t)|

where the sup is over all the formulas of the logic. Dexter’s ideas have been
incredibly fruitful and we are still mining them. Meanwhile, though Dexter has
been busy with many other topics he came up with a beautiful coinduction
principle for stochastic processes in a recent [27, 28] paper. Perhaps by 2017 I
will understand it well enough to develop the subject further. Meanwhile, happy
birthday Dexter!

Acknowledgments. My work on LMPs has been greatly stimulated by my
collaborators Samson Abramsky, Rick Blute, Philippe Chaput, Abbas Edalat,
Norm Ferns, Vineet Gupta, Chris Hundt, François Laviolette, Gordon Plotkin,
Doina Precup and most especially Vincent Danos, Josée Desharnais and Radha
Jagadeesan.
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An Appreciation of Dexter Kozen

Rohit Parikh

March 7, 2012

I met Dexter Kozen in October 1979 at the FOCS meeting in Puerto Rico where
he gave a paper on the semantics of probabilistic programs. The main reason for
our discussion at that meeting was the fact that he was the referee of a paper
which I had submitted to Theoretical Computer Science - TCS with Albert
Meyer as editor.

Here is the background, some of which overlaps what Joe Halpern has said.
After Pratt’s proposal [13] and development of (first order) Dynamic Logic as
a way of providing a semantics for programs and proving their correctness, Fis-
cher and Ladner approached the related issue of propositional Dynamic Logic
(PDL) [2]. They proved decidability, and exponential time completeness1 (using
a technique due to Chandra, Kozen and Stockmeyer [1] for the lower bound).
But they left the problem of completeness open. This was in the late 70’s.

I was then a professor at Boston University but fairly close to the group at
the Laboratory of Computer Science at MIT, especially with my friends Albert
Meyer, Vaughan Pratt and David Harel. Influenced by the trio I started to work
on the completeness of PDL and published my solution in the proceedings of a
conference in Zakopane, Poland [9].2

I then submitted the paper to Albert Meyer for publication in TCS and Meyer
astutely chose Kozen as the referee. This was the background for my chats with
Dexter in Puerto Rico and later at IBM. This incident itself illustrates a trait of
Dexter, that he is so straightforward. Referees in general are eager to hide their
identity, but Dexter had no trouble communicating openly with me.

Try as he could, Dexter could not follow my proof, and I confess that the
fault was not entirely his. The diffculty in proving completeness was this. There
were standard techniques for proving completeness of modal logics via the con-
struction of a canonical model. The issue was with the Kleene3 star operator.
The usual construction interpreted the *-operator in a possibly non-standard
way so that the *-closure of a relation R might involve infinitely many iterations
(past ω). This meant that completeness was obtainable for nonstandard models
of PDL, but how to show that PDL was also complete relative to standard mod-
els? (Note: completeness of a formal system relative to a larger class of models
does not imply completeness relative to a smaller class.) Dexter did not enjoy
my elaborate constructions to convert a nonstandard model into a standard one,

1 [2] only proved a non-deterministic exponential upper bound. A deterministic expo-
nential upper bound was proved by Pratt [14].

2 Krister Segerberg announced a set of axioms while I was working on completeness,
but it turned out that he did not actually have a completeness proof for his axioms
at that time.

3 Kleene himself was present at that meeting in Puerto Rico.
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and eventually came up with a brilliant solution. He bypassed most of my con-
struction and found an argument using the same ideas, but directly constructing
a finite standard model. Thus we had the Kozen-Parikh completeness proof of
PDL [4], widely cited and read in the literature.

My collaborations with Dexter continued through several papers, [10, 5, 6]
and our friendship also became more personal when I moved to CUNY, living
first in Brooklyn and then in Larchmont. I still remember an occasion when
Dexter was visiting us in Larchmont and we wanted to go to the Larchmont
Manor park on Long Island Sound. But there were five of us and only room for
four in the car. Dexter, not a small man, gamely offered to ride in the trunk and
did! (The car was a hatchback so the trunk was not quite a prison).

My collaborations with Dexter ceased after 1983, but I did not lose interest in
our common area. Some time in the early and middle 80’s I realized that PDL
could be converted into a logic to reason about games by simply dropping one
of the axioms (the PDL equivalent of Kripke’s normality axiom). I adapted the
Kozen-Parikh completeness proof to the logic of games and that paper [11] has
also been influential.

However, the completeness I proved was for the “dual-free” part of the logic
of games and as far as I know, the completeness of the axioms I proposed then
for the full game logic has been neither proved nor disproved.

From the logic of games I proceeded to work in epistemic logic, and in game
theory proper, trying to develop a logician’s understanding of how games and
society work. A good early reference is [12]. But that is a part of my career which
no longer involves Dexter.

Perhaps I can say a little bit about this area. The work I did with Dexter and
others was essentially about the mathematics of programs. But society itself
consists of lots of programs. There are single-agent programs like a cooking
recipe or learning a language or travelling to a conference. In such programs,
either there are no other agents (the first two cases) or if there are other agents,
they are assumed co-operative and one can treat them as resources no different
from subroutines.

In other social programs which are inherently multi-agent, like elections or
wars, it is assumed not only that there are other agents, but that their goals
may be incompatible or only partially compatible. And in that case, anticipating
their moves is an additional issue.

A deep understanding of mathematical programs was developed by the dy-
namic logic community (consisting of Dexter and I and many others) and the
temporal logic community. But some of these insights can apply also to the “soft-
ware” of society. So I hope that some of the brilliant minds who have worked
on the logic of computer programs will turn their attention to the logic of social
programs. A good survey can be found in [7]. See also [16]

Finally, I should mention a professional contact between Dexter and me which
was not a personal contact. Some time in the 90’s Dexter became interested in
Parikh’s theorem, a result which I had proved for Chomsky when I was a gradu-
ate student at Harvard. See [3, 8]. But this research was done entirely at Dexter’s
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own initiative. I myself had become more interested in social and philosophical
issues, and Dexter the algebraist was much more of a mathematician than I was
at that stage.
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To Dexter - A Tribute from Aarhus

Erik Meineche Schmidt, Mogens Nielsen, and Sven Skyum

Department of Computer Science, Aarhus University, Denmark

At Aarhus University, we consider Dexter to be one of our oldest and best
friends and colleagues. Dexter has visited our Department of Computer Science
as a guest professor twice, first in 1981–1982 and again, exactly 10 years later, in
1991–1992. Both visits were immensely successful and laid the ground for con-
tinued cooperation during the following years. Dexter made numerous shorter
visits to the department, and he served with great enthusiasm and competence on
the advisory board for BRICS (Basic Research in Computer Science) Research
Center and international PhD-School. BRICS covered both “Track A and B” ac-
tivities (Algorithmics and Semantics), and as such Dexter was the ideal adviser.
Looking back, we pay tribute to Dexter for his many contributions to computer
science in Aarhus over a period of more than thirty years.

There can be no doubt that Dexter is among the most highly regarded the-
oretical computer scientists in the world. In addition, he is a devoted volunteer
firefighter, an excellent (amateur) musician and he has an exceptional talent for
learning languages. Three months after his first arrival in Aarhus (back in 1981)
he announced that from now on he would speak only Danish when around the
department. In the beginning this was a genuine “pain in · · ·”, but after a couple
of months he spoke Danish fluently (which he still does). So if visitors to foreign
countries really want to learn the local language, this is definitely how to do it!

Erik first met Dexter in 1975 at Cornell, where they were both graduate
students (and both with Juris Hartmanis as supervisor). Erik was with his family
(wife and two children), and Dexter and Fran (who were already together then)
were among the first to take care of this little Danish family making sure to
include them in the social life around the department. We hope that we succeeded
in repaying some of this hospitality during Dexter’s second sabbatical, where his
family now consisted of Fran, Alexander, Geoffrey and Timothy.

At the personal level, Dexter is always interesting to be around. He takes a
genuine interest in other people, he engages enthusiastically in discussions and
he has a well developed sense of humor. We hope that more that 30 years of
cooperation and friendship will continue in the future, and who knows maybe
another sabbatical in Aarhus (20 years later) will materialize?
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Travelling with Dexter Kozen 

Peter van Emde Boas 
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Franz Lisztlaan 5, 2012 CJ Heemstede, The Netherlands  
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Abstract. Aside from our shared interest in particular areas of Theoretical 
Computer Science, the experience I share with Dexter Kozen originates from 
the fact that we both belong to the not too large group of Theoreticiancs who 
during the late 1970-ies and early 1980-ies frequently crossed the Iron Curtain 
in order to interact with our colleagues from the Socialist part of Europe. This 
results into many appearances of Dexter in my collection of pictures from that 
period; a collection I like to share with the readers of this volume. 

There is definitely a large overlap between the research Interests of Dexter Kozen and 
myself. Yet this has not resulted in any joint publication or a shared supervised stu-
dent. The closest we came to a joint publication is the fact that I contributed a paper to 
the volume Dexter edited on the Logic of Programs workshop in Yorktown Heights in 
1981 (item 1611), while Dexter contributed to the Festschrift on the occasion of the 
ph.d. Defence of Arjen K. Lenstra in 1984 which was edited by a group including 
myself  (item 10). 

What we do share is a large number of social encounters at various meetings, 
particularly in Eastern Europe at the time when the Iron Curtain still was a fact of life, 
a reality believed to persist for the oncoming decades. We both belonged to the not 
too large community of Theoretical Computer Scienctist who frequently traveled to 
the East in order to participate or to contribute as speaker or program committee 
member to the Theory conferences organised in these countries, like MFCS, FCT or 
the smaller workshops organised in Poznan or East Berlin. We have also had our 
mutual visits to our home institutes. 

Starting the fall of 1976 I have been making pictures at almost all lectures and 
other events attended by me. The pictures involve speakers, but also session chairs 
and (occasionally) the audience. The collection also includes pictures made during the 
social events (diners and excursions). Today, given the availability of digital cameras 
with virtually unbounded storage capacity such pictures are quite common, but in the 
1970-ies and 1980-ies we still were operating with a limited amount of film material, 
which moreover not always could be refreshed, particularly not in Eastern Europe.  

                                                           
1 The numbers mentioned refer to a version of Dexter’s CV dated August 23 2011 which I 

found on the Web. 
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The earliest pictures of Dexter in my collection were made in the USA rather than 
Europe. Our first recorded encounter must have been at the FOCS 1978 meeting in Ann 
Arbor where Dexter was presenting a paper on his Mice and Maze work (item 60).  

 

Fig. 1. FOCS 17, Oct 17 1987 

In this presentation Dexter succeeded to give a single slide presentation of the rather 
difficult proof of Budach’s theorem that Finite Automata can’t escape from mazes. 

 

Fig. 2. Budach’s proof 

The next year we shared a trip to a workshop in Poznan organised by Marek Kar-
pinski and his colleagues, followed by the FCT 1979 meeting in Wendisch Riesz in 
the GDR. Aside from Dexter the picture shows Marek Karpinski and his wife Jitka, 
and also my wife Ghica and my eldest son Donald appear. 
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Fig. 3. Poznan Sep 11 1979 

The next picture shows some of the other participants of the workshop: A Salwicki, 
M. Chytil and mr. Habashinsky. The next two pictures were made at the workshop. 
Again Dexter was presenting his work on Mice and Mazes. 

 

 

Fig. 4. Poznan Sep 11 1979 
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Fig. 5. Poznan Sep 12 1979 

This picture shows the same slide as used in Ann Arbor the year before, but this 
time in full colour (provided you have access to the .pdf).   

 

Fig. 6. Frankfurt am Oder, Sep 20 1979 

On the next picture we encounter Dexter at the High table of the conference diner 
in Frankfurt am Oder; the table is chaired by Oberburgemeister Hasse; left of him is 
Lothar Budach. 

The next picture was made in Noordwijkerhout on the occasion of the ICALP 
meeting in July 1980. To save expenses I had obtained permission of my colleage 
mrs. E Dobber to use her vacation house close to the conference site for housing a few 
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of our Eastern European representatives. Needless to say that we had a party there. 
The picture shows aside from Dexter also A. Goralcikova and P. Berman. 

 

Fig. 7. Noordwijkerhout,  Jul. 17 1980 

 

Fig. 8. Garisson, May 03 1981 

The next two pictures were made at the time of the Logic of Programs workshop in 
Yorktown Heights. The first one shows next to Dexter and Marek Karpinski also Lutz 
Priese, Jurek Tyurin and myself. The second one shows H Langmaack, D Luckham 
and W.P de Roever. No pictures were made at the workshop; no cameras were al-
lowed within an IBM laboratory at that time. 
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Fig. 9. Garisson May 03 1981 

Next we move to the ICALP in Aarhus in July 1982. Dexter has spent a Visiting 
professorate there and is hosting me as a visitor. Together with his wife Fran he 
shows me the local street sculptures.  

 

Fig. 10. Aarhus July 08 1982 
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Fig. 11. Aarhus July 15 1982 

Next his performance at the ICALP conference dinner where he is reading the Da-
nish translation of Jabberwocky composed at the diner. 

 

Fig. 12. Washington D.C., Apr 29 1984 
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Back to the USA. Before the start of STOC 1984 in Washington we had a small re-
ception at the house of John Cherniavsky, where we meet Dexter discussing with 
Mike Paterson and Albert Meyer. 

We skip a few years till 1987 when Dexter is organizing the IEEE Structure in 
Complexity Theory 2 and LICS 2 meetings in Cornell. We meet him with Fran and 
the two elder sons in Thauganook Park for one of the Social events, and we see how 
efficient he is carrying documents on a bike without additional equipment for trans-
porting objects. 

 

Fig. 13. Cornell Jun 18 1987 

 

Fig. 14. Cornell Jun 22 1987 



350 P. van Emde Boas 

 

Fig. 15. Heemstede  May 15 1992 

.  

Fig. 16. Amsterdam, May 15 1992 

I continue with two pictures made again in the Netherlands. The first shows Dexter 
navigating the pond behind my house, and the second one where he presents one of 
the many talks given in Amsterdam. 

One final example illustrating how Dexter has influenced my work. The complete-
ness result on Kleene Algebras (item 83) which he presented at the Amsterdam LICS 
in 1991 is actually much older. I remember that he gave me a preprint of an earlier 
version sometime during the early 1980-ies, and that I decided that it was a marvelous 
result, so I presented it to my students in the third year’s course on automata theory (it 
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must have occurred before 1985 since starting that year the course was transferred to 
other teachers). A nice mixture of formal language theory and algebra which has been 
an important ingredient in my automata course since 1973. It is questionable whether 
my students shared my taste for good mathematics at that occasion. 

It remains to show what Dexter looks like today. The final picture shows Dexter 
during a talk given at the CWI on Nov 07 2011. Evidently he has aged, but not the 
quality of his work in Mathematics and Computer Science. 

 

Fig. 17. Amsterdam Nov 07 2011 



Dexter as a PhD Advisor

Brad Vander Zanden

University of Tennessee, Knoxville, TN 37920, USA
bvz@eecs.utk.edu

Dexter and I work in very different areas in Computer Science, so I cannot
attest to his successes in Computer Science as I am sure others so eloquently
will. However, I was Dexter’s first PhD graduate, and I can certainly attest to his
skills as a PhD advisor. Dexter actually arrived at Cornell after I started my PhD
program. He had a buzz of electricity about him and that quality above all others
initially attracted my interest. At that time Dexter was already an accomplished
theoretician. I know that he has considerably burnished that already formidable
reputation in the intervening decades. My story is a different one though, and
it winds through the area of graphical user interfaces.

Graphical user interfaces are now well entrenched in computer science, but in
the mid 1980s this field was just starting to develop. Somehow I had developed
an interest in this area, but no one on the faculty at Cornell was doing research
in GUIs. Then Dexter arrived, and while his primary interest seemed to be in the
more theoretical aspects of programming languages, he did have a side-interest
in designing a visual language for scientific computing. A group of us would have
a weekly lunch meeting at Vinnies, a now defunct pizzeria in Ithaca, to discuss
the design of the language. Dexter christened this language Alex, after his first
son, and ultimately graduated a PhD student, Eugene Ressler, who more fully
developed the language.

My interest progressed in a different direction, as it focused on adapting at-
tribute grammars to the problem of formally specifying a GUI, and then devel-
oping a tool to take that specification and generate an actual GUI. Fortunately
Dexter was accommodating and agreed to be my PhD advisor, even though this
subject was pretty far afield from his area of expertise. It was only as I matured
as a researcher that I truly realized the risk that Dexter took in taking me on
as a PhD advisee. When you accept a PhD advisee who is outside your natu-
ral area, it is much more difficult to assess that person’s contribution, as you
are not familiar with the related work in that area. Considering that Dexter’s
realm tends toward the abstract, mathematical side of computer science, and
my realm tends toward the concrete, and more psychological, side of computer
science, Dexter was taking something of a leap. I am indebted to Dexter for
taking this risk, as I would have had to otherwise leave Cornell and go elsewhere
to pursue my interest.

One of Dexter’s biggest contributions to my career was showing me how math-
ematics could be applied to GUIs in a beneficial manner. Keeping up with Dexter
is not easy. I had a business background when I came to Cornell, and although
I worked on beefing up my mathematical credentials, they never rivaled Dex-
ter’s mathematical wizardry. I remember entering Dexter’s office to discuss my
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weekly progress and leaving an hour later with my head spinning from all the
mathematics and ideas that Dexter ran through in that hour. I usually would
go back to my office and spend some time talking with my officemate Bill Pugh,
trying to work out the ins-and-outs of Dexter’s insights. Over the months with
Dexter I slowly improved my abilities to design and analyze algorithms, and to
speak about them precisely. I still remember one line from my PhD disserta-
tion, which initially started out as reading “An NP-complete problem requires
an exponential amount of time to solve.” To someone like me who was not really
into theory, this statement was “close enough”. Of course this statement made
Dexter shutter and I got a nice little lecture about it. The line that was finally
published read “It is commonly conjectured that an NP-complete problem re-
quires an exponential amount of time to solve.” This attention to precision has
served me well over the years. On a number of occasions I was able to help an
author in the GUI area tighten up their proof because of the experience that I
gained under Dexter’s tutelage.

Dexter also delivered some first-rate career advice, although I did not partic-
ularly appreciate his efforts at first. Towards the end of my dissertation, Dexter
suggested that it might be a good idea to get a post-doc and work with someone
more deeply associated with GUIs, before pursuing a position in academia. Be-
ing bull-headed, I pushed ahead with applying for academic positions. However,
because I was not yet that well-known, that search did not fare particularly
well. I ended up doing precisely what Dexter suggested and accepted a post-doc
position at Carnegie Mellon with one of the leading GUI researchers, both then
and now, Brad Myers. Brad really helped shepherd my career in GUI and when
I emerged from CMU 2 years later, I was a rising star in the GUI field and
had many more job opportunities. Dexter’s intuition and nudge in this direction
proved to be just the right tonic for my career.

I will always remember Dexter fondly for taking a chance on a student so far
removed from his own normal area of expertise, particularly at such an early
juncture in his own academic career. Despite the difference in areas, it speaks
volumes about both his intellectual ability and his versatility that he was able
to provide me with such invaluable guidance throughout my PhD dissertation.
Thanks to his help, support, and wisdom, I was able to launch what has been a
very satisfying and fulfilling academic career.



Rock’n’Roll Computer Science

Fritz Henglein

Department of Computer Science, University of Copenhagen (DIKU)
henglein@diku.dk

I am not a student, colleague or co-author of Dexter’s, yet his person and his
work have influenced and inspired me since my graduate student days, a time
when Dexter already was a towering figure in the minds of students interested
in theoretical computer science.

It started with my Master’s essay in Artificial Intelligence1. An algebraic
structure emerged, which showed itself to have been investigated before: Under
the name of Dynamic Algebra — with Dexter’s name prominently attached as
founder and key contributor. Later, in a graduate seminar by Steve Fortune
and Steve Mahaney I was drawn to giving a presentation on Alternating Turing
Machines, pioneered by Dexter. They struck me not only as a powerful tool for
connecting logic and complexity classes, but as profoundly enlightening: A new
way of thinking about computation!

Then, meeting Dexter for the first time at LICS 87 in Ithaca, I was amazed to
find the outgoing, friendly, generous and fun person that he is, a larger-than-life
figure who is all over of the map of life, not just the one of computer science. I
thoroughly enjoyed playing on the same team with him during the traditional
Logic versus Computer Science soccer match. (He chose the CS side – Dexter
being ambidextrous, LICS-wise, he had his pick.) He was a great team player:
Moving into open space, conquering it, always playable — and at the same time
a finisher. Not unlike the way he plays computer science.

I chanced upon a contribution he had in the EATCS bulletin in 1996 on
regularity-preserving functions and thought it was just . . . beautiful. I felt com-
pelled to send him an email saying just that: Beautiful! I haven’t done such a
thing since (in hindsight, I should have).

In 1997, a clever technique I thought my student Michael Brandt and I had de-
veloped for coinductive axiomatization turned out to be — in a technically more
challenging setting — developed in Dexter’s seminal modal µ-calculus paper.

During my visit at Cornell in 1999, Dexter showed me Kleene Algebra with
Tests (my bad for only knowing it superficially then). He stood at the blackboard
and was in the middle of developing a proof. Suddenly he turned towards me,
held up the chalk and asked: “How would you solve that?” Nothing sharpens
one’s attention like the adrenalin kick of being called to the blackboard! Later
that afternoon Dexter asked if I wanted to join in on a hockey game. It was a
fantastic visit. (I wimped out on the hockey game, though.)

1 On Backpropagation of constraints, April 1984, Rutgers University.
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On his visits to Denmark I have to warn friends and colleagues that the
private channel strategy of speaking Danish fails miserably with Dexter: He not
only speaks Danish fluently, he also knows all those words that you can’t find in
a regular Danish dictionary . . .

Studying his seminal axiomatization of regular expression equivalence – the
equational theory of Kleene Algebras, which has Dexter’s massive influence scrib-
bled all over its development – we (my Ph.D. student Lasse Nielsen and I) found
that it not only turns out to be technically superior to others (which Dexter
points out), but there was something “right” beyond that about it: his proof
system turned out to have an appealing interpretation as a natural functional
programming language, a way of putting proofs into an electric outlet and run-
ning them. More recently I have been looking at languages for probabilistic pro-
cesses, and there he popped up again: Dexter laying the foundation of semantics
of probabilistic programming languages a whopping 30 years ago. I suspect I am
not the only one who is amazed at – and maybe unaware of the full scope of –
the enormous breadth, depth and impact of his work.

Dexter is one of very few people I can think of who is at home in – and
transcends – both “discrete math” TCS, which may fall victim to a “it’s all
bits – and thus all about a big-O/complexity classes” tarpit of thinking; and
“semantics” TCS, which may fall victim to the “it’s all structure – and all
about full abstraction” tarpit. I have always thought of Dexter’s work as the
incarnation of rock’n’roll computer science: not just conceptually and technically
deep computer science, but computer science that rocks. And that was before
I found out that Dexter does do rock’n’roll in a literal sense (not to mention
goes bone-crushingly full-body in rugby matches), but I am no longer surprised
about such revelations.
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Górecki, Pawe�l 83

Halpern, Joseph Y. 324
Harel, David 326
Henglein, Fritz 354
Hopcroft, John 328

Immerman, Neil 24

Jeannin, Jean-Baptiste 106
Jordan, Charles 24

Knight, Sophia 219
Kreitz, Christoph 124
Kupke, Clemens 149

Landau, Susan 329

Mardare, Radu 219
Michalewski, Henryk 165
Mikulás, Szabolcs 1

Miller, Julia 323
Miller, Paul 323
Moss, Lawrence S. 180
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